Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km
I'm not sure but I know u is 10^6
It would be 12W because: 6v is half of 12v so half of 24w would be 12w
Answer:
<h3>1.01 s</h3>
Explanation:
Using the equation of motion S = ut+1/2gt² to solve the problem where;
u is the initial velocity of the chocolate = 0m/s
t is the time taken
g is the acceleration due to gravity = 9.81m/s²
S is the height of fall = 5.0m
Substituting the given parameter into the formula to get the time t we have;
5 = 0(t)+1/2(9.81)t²
5 = 4.905t²
t² = 5/4.905
t² = 1.019
t = √1.019
t = 1.009 secs
<em>Hence it will take 1.01 secs for me to catch the chocolate bar</em>