Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]
The mass of hydrated salt - 2.123 g
mass of anhydrous salt - 1.861 g
mass that has been reduced is the mass of water that has been heated and lost from the compound thereby making the salt anhydrous.
therefore mass of water lost - 2.123 - 1.861 = 0.262 g
number of moles of water lost - 0.262 g / 18 g/mol = 0.0146 mol
number of moles of salt - 1.861 g / 380.6 g/mol = 0.00490 mol
molar ratio of moles of water to moles of salt
molar ratio = 0.146 mol / 0.00490 mol = 2.98 rounded off to 3
for every 1 mol of salt there are 3 moles of water
therefore empirical formula - Cu₃(PO₄)₂.3H₂O
Carnivore, but some are herbivores
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
89.6L
Explanation:
1mole of any gas occupies 22.4L. This simply means that,
1mole of CO2 occupies 22.4L at stp.
Therefore, 4moles of CO2 will occupy = 4 x 22.4 = 89.6L