1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
5

What type of substance reacts with limestone (CaCO3) and produces carbon dioxide gas?

Chemistry
2 answers:
Anestetic [448]3 years ago
3 0
Acids react with calcium carbonate and more specifically carbonate to form carbon dioxide. An acid will give protons to the carbonate anion to produce carbonic acid which then decomposes into carbon dioxide and water. I hope this helps. Let me know if anything is unclear.
Sergio [31]3 years ago
3 0

In English, the answer is C) An acid.

You might be interested in
During a chemical reaction, an iron atom became the ion Fe2+. What happened to the iron atom?
Mariana [72]
The Iron atom lost two electrons to become the Fe2+ ion. This is referred to as oxidation.
5 0
3 years ago
Read 2 more answers
A sample of neon gas occupies 105 L at 27°C under a pressure of
Viefleur [7K]

Answer: Volume occupied by given neon sample at standard condition is 123.84 L.

Explanation:

Given: V_{1} = 105 L,    T_{1} = 27^{o}C = (27 + 273) K = 300 K,     P_{1} = 985 torr

At standard conditions,

T_{2} = 273 K,     P_{2} = 760 K,        V_{2} = ?

Formula used to calculate the volume is as follows.

\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}

Substitute the values into above formula as follows.

\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{985 torr \times 105 L}{300 K} = \frac{760 torr \times V_{2}}{273 K}\\V_{2} = \frac{94116.75}{760} L\\= 123.84 L

Thus, we can conclude that volume occupied by given neon sample at standard condition is 123.84 L.

8 0
2 years ago
Cytokinesis happens differently for plant and animal cells. Both separate cytoplasm between two new daughter cells. However, whi
victus00 [196]

Answer:

animal cell

Explanation:

Cytokinesis -

It refers to the process of cell division, which takes place during mitosis, is known as cytokinesis.

The process of cytokinesis is different for animal cell and plant cell.

  • Where, in case of plant cell, a separation, known as cell plate is formed along the center of the parent cell, which is responsible for the separation of the cells.
  • Whereas, in case of animal cell, the plasma membrane contracts itself along the center, until the two daughter cells are separated from each other.

Hence, from the given information of the question,

The correct answer is animal cell.

7 0
3 years ago
A compound is 42.9% C, 2.4% H, 16.7% N, and 38.1% O, by mass. Addition of 6.45 g of this compound to 50.0 mL benzene, lowers the
Romashka [77]

This is an incomplete question, here is a complete question.

A compound is 42.9% C, 2.4% H, 16.7% N and 38.1% O by mass. Addition of 6.45 g of this compound to 50.0 mL benzene, C₆H₆ (d= 0.879 g/mL; Kf= 5.12 degrees Celsius/m), lowers the freezing point from 5.53 to 1.37 degrees Celsius. What is the molecular formula of this compound?

Answer : The molecular of the compound is, C_6H_4N_2O_4

Explanation :

First we have to calculate the mass of benzene.

\text{Mass of benzene}=\text{Density of benzene}\times \text{Volume of benzene}

\text{Mass of benzene}=0.879g/mL\times 50.0mL=43.95g

Now we have to calculate the molar mass of unknown compound.

Given:

Mass of unknown compound (solute) = 6.45 g

Mass of benzene (solvent) = 43.95 g  = 0.04395 kg

Formula used :  

\Delta T_f=K_f\times m\\\\\Delta T_f=K_f\times\frac{\text{Mass of unknown compound}}{\text{Molar mass of unknown compound}\times \text{Mass of benzene in Kg}}

where,

\Delta T_f = change in freezing point  = 5.53-1.37=4.16^oC

\Delta T_s = freezing point of solution

\Delta T^o = freezing point of benzene

Molal-freezing-point-depression constant (K_f) for benzene = 5.12^oC/m

m = molality

Now put all the given values in this formula, we get

4.16^oC=(5.12^oC/m)\times \frac{6.45g}{\text{Molar mass of unknown compound}\times 0.04395kg}

\text{Molar mass of unknown compound}=180.6g/mol

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

Mass of C = 42.9 g

Mass of H = 2.4 g

Mass of N = 16.7 g

Mass of O = 38.1 g

Molar mass of C = 12 g/mole

Molar mass of H = 1 g/mole

Molar mass of N = 14 g/mole

Molar mass of O = 16 g/mole

Step 1 : convert given masses into moles.

Moles of C = \frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{42.9g}{12g/mole}=3.575moles

Moles of H = \frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{2.4g}{1g/mole}=2.4moles

Moles of N = \frac{\text{ given mass of N}}{\text{ molar mass of N}}= \frac{16.7g}{14g/mole}=1.193moles

Moles of O = \frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{38.1g}{16g/mole}=2.381moles

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C = \frac{3.575}{1.193}=2.99\approx 3

For H = \frac{2.4}{1.193}=2.01\approx 2

For N = \frac{1.193}{1.193}=1

For O = \frac{2.381}{1.193}=1.99\approx 2

The ratio of C : H : N : O = 3 : 2 : 1 : 2

The mole ratio of the element is represented by subscripts in empirical formula.

The Empirical formula = C_3H_2N_1O_2

The empirical formula weight = 3(12) + 2(1) + 1(14) + 2(16) = 84 gram/eq

Now we have to calculate the molecular formula of the compound.

Formula used :

n=\frac{\text{Molecular formula}}{\text{Empirical formula weight}}

n=\frac{180.6}{84}=2

Molecular formula = (C_3H_2N_1O_2)_n=(C_3H_2N_1O_2)_2=C_6H_4N_2O_4

Therefore, the molecular of the compound is, C_6H_4N_2O_4

3 0
3 years ago
Using the Bohr model, determine the energy in joules of the photon produced when an electron in a Li2+ ion moves from the orbit
djverab [1.8K]

Answer:

1.64x10⁻¹⁸ J

Explanation:

By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.

When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:

E = hc/λ

Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.

The wavelength can be calculated by:

1/λ = R*(1/nf² - 1/ni²)

Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:

1/λ = 1.097x10⁷ *(1/1² - 1/2²)

1/λ = 8.227x10⁶

λ = 1.215x10⁻⁷ m

So, the energy is:

E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)

E = 1.64x10⁻¹⁸ J

3 0
3 years ago
Other questions:
  • The electron configuration of calcium is
    8·2 answers
  • Write a balanced equation for the reaction between sulphuric acid and potassium hydroxide
    11·1 answer
  • How is the le chatelier's principle used to ensure the reaction will go to completion?
    8·1 answer
  • How many phases does an element have
    6·1 answer
  • How many atoms is 50 g of He?
    7·1 answer
  • The reaction 2NO2(g)+F2(g)-->2NO2F(g) has an overall second order rate law, rate=k[NO2][F2]. Suggest a mechanism consistent w
    15·1 answer
  • If a photon dropping from the n = 7 to the n = 1 level hit the surface of Au, what would be the wavelength of the ejected electr
    8·1 answer
  • Identify the properties of a covalent substance (multiple answers )
    11·2 answers
  • How many moles of OH−(aq) (hydroxide ions)are present in the balanced redox reaction?
    8·1 answer
  • Water can take on three forms which include ice, water, and water vapor. Which states of matter match these three forms of water
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!