The scheme whereby occupants in a pair of shuttles is as follows
use a strong cable with large weight on the end
Then use the orbital naneuvering system(OMS) to set the whole work as spinning about their common center of gravity.
Answer:
For destructive interference phase difference is
where n∈ Whole numbers
Explanation:
For sinusoidal wave the interference affects the resultant intensity of the waves.
In the given example we have two waves interfering at a phase difference of
would lead to a constructive interference giving maximum amplitude at at the RMS value of the amplitude in resultant.
Also the effect is same as having a phase difference of
because after each 2π the waves repeat itself.
<em>In case of destructive interference the waves will be out of phase i.e. the amplitude vectors will be equally opposite in the direction at the same place on the same time as shown in figure.</em>
They have a phase difference of
or which is same as 
Generalizing to:
a phase difference of
where n∈ {W}
{W}= set of whole numbers.
Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees
Answer:
The net magnetic field ta the center of square is
.
Explanation:
Current, I = 12 A , side ,a = 10 cm = 0.1 m
Let the magnetic field due to the one side is B.
The magnetic field is given by

Net magnetic field at the center of the square is
B' = 4 B

Hi! Check out my valid counter argument below!
"The accident only released harmless gamma rays."
Hope I helped!