1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
7

The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of

the light passing through it. At wavelength 486.1 nm (blue, designated with letter F) -> nF=1.497, and at wavelength 656.3 nm (red, designated with letter C) -> nC=1.488. Two beams (one of each wavelength) are prepared to coincide, and enter the flat polished surface of an acrylic block at angle of 45 arc degree measured from the normal to the surface. What is the angle between the blue beam and the red beam in the acrylic block?
Physics
1 answer:
Novosadov [1.4K]3 years ago
4 0

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 \theta _d  =0.19 ^o

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  n_F  =  1.497

     The  wavelength of the blue light is F  =  486.1 nm  =  486.1 *10^{-9} \ m

    The  refractive index of the transparent acrylic plastic for red light is  n_C  =  1.488

       The  wavelength of the red light is C =  656.3 nm  = 656.3 *10^{-9} \  m

    The incidence angle is  i  =  45^o

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       r_F =  sin ^{-1}[\frac{sin(i) *  n_a }{n_F} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_F =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.497} ]

      r_F  =  28.18^o

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       r_C =  sin ^{-1}[\frac{sin(i) *  n_a }{n_C} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_C =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.488} ]

      r_F  =  28.37^o

The angle between the blue beam and the red beam in the acrylic block

     \theta _d  =  r_C  - r_F

substituting values

       \theta _d  = 28.37 -  28.18

       \theta _d  =0.19 ^o

 

You might be interested in
Which of the following statements is TRUE about updating the exposure control plan?
iren2701 [21]

Statements that are true as regards exposure control plan and its updating are;

<em>Updates must have the  reflection of changes in tasks as well in procedures.</em>

<em>Updates must reflect changes in positions that affect occupational exposure.</em>

<em>Updates must have the cost of PPE that is needed and  necessary to reduce exposure</em>

An exposure control plan can be regarded as  the framework for compliance between the employer and the workers.

  • This framework give room for the employer to creates a written plan that will help in protecting their workers from bloodborne pathogens.

  • This plan gives hope to workers in term of protection when working with their Employer.

  • There are some elements that is associated with  Exposure Control Plan, and theses are;
  1. Health hazards as well as  risk that is attributed to  each product in the worksite.
  2. Statement of purpose.
  3. procedures and practices in a written form
  4. Responsibilities from the Manager, CEO, designated resources and employer.

Therefore, exposure control plan is avenue to protect workers from bloodborne pathogens.

brainly.com/question/1203927?referrer=searchResults

3 0
2 years ago
As a new electrical technician, you are designing a large solenoid to produce a uniform 0.170 T magnetic field near the center o
MrRa [10]

Answer:

18.6012339739 A

Explanation:

\mu_0 = Vacuum permeability = 4\pi \times 10^{-7}\ H/m

L = Length of wire = 55 cm

N = Number of turns = 4000

I = Current

Magnetic field is given by

B=\dfrac{\mu_0NI}{L}\\\Rightarrow I=\dfrac{BL}{\mu_0N}\\\Rightarrow I=\dfrac{0.17\times 0.55}{4\pi \times 10^{-7}\times 4000}\\\Rightarrow I=18.6012339739\ A

The current necessary to produce this field is 18.6012339739 A

7 0
3 years ago
The maximum wavelength For photoelectric emissions in tungsten is 230 nm. What wavelength of light must be use in order for elec
notka56 [123]

Answer:

λ = 1.8 x 10⁻⁷ m = 180 nm

Explanation:

First we find the work function of tungsten by using the following formula:

∅ = hc/λmax

where,

∅ = work function = ?

h = Plank's Constant = 6.626 x 10⁻³⁴ J.s

c = speed of light = 3 x 10⁸ m/s

λmax = maximum wavelength for photoelectric emission = 230 nm

λmax = 2.3 x 10⁻⁷ m

Therefore,

∅ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.3 x 10⁻⁷ m)

∅ = 8.64 x 10⁻¹⁹ J

Now we convert Kinetic Energy of electron into Joules:

K.E = (1.5 eV)(1.6 x 10⁻¹⁹ J/1 eV)

K.E = 2.4 x 10⁻¹⁹ J

Now, we use Einstein's Photoelectric Equation:

Energy of Photon = ∅ + K.E

Therefore,

Energy of Photon = 8.64 x 10⁻¹⁹ J + 2.4 x 10⁻¹⁹ J

Energy of Photon = 11.04 x 10⁻¹⁹ J

but,

Energy of Photon = hc/λ

where,

λ = wavelength of light = ?

Therefore,

11.04 x 10⁻¹⁹ J = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ

λ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(11.04 x 10⁻¹⁹ J)

<u>λ = 1.8 x 10⁻⁷ m = 180 nm</u>

5 0
3 years ago
Is diverse families positive or negative
nataly862011 [7]
Think its Positive 
hope this helpes
6 0
3 years ago
a ballistic pendulum is used to measure the speed of high-speed projectiles. A 6 g bullet A is fired into a 1 kg wood block B su
Galina-37 [17]

Answer:

(a) v-bullet = 399.04 m/s

(b) I = 2.38 kg m/s

(c) T = 2.59 N

Explanation:

(a) To calculate the initial speed of the bullet, you first take into account that the kinetic energy of both wood block and bullet, just after the bullet impacts the block, is equal to the potential gravitational energy of block and bullet when the cord is at 60° respect to the vertical.

The potential energy is given by:

U=(M+m)gh       (1)

U: potential energy

M: mass of the wood block = 1 kg

m: mass of the bullet = 6g = 6.0*10^-3 kg

g: gravitational constant = 9.8m/s^2

h: distance to the ground

The distance to the ground is calculate d by using the information about the length of the cord and the degrees of the cord respect to the vertical:

h=l-lsin\theta\\\\h=2.2m-2,2m\ sin60\°=0.29m

The potential energy is:

U=(1kg+6*10^{-3}kg)(9.8m/s^2)(0.29m)=2.85J

Next, the potential energy is equal to kinetic energy of the block and the bullet at the beginning of its motion:

U=\frac{1}{2}(M+m)v^2\\\\v=\sqrt{2\frac{U}{M+m}}=\sqrt{2\frac{2.85J}{1kg+6*10^{-3}kg}}=2.38\frac{m}{s}

Next, you use the momentum conservation law, in order to calculate the speed of the bullet before the impact:

Mv_1+mv_2=(M+m)v    (2)

v1: initial velocity of the wood block = 0m/s

v2: initial speed of the bullet

v: speed of bullet and block = 2.38m/s

You solve the equation (2) for v2:

M(0)+mv_2=(M+m)v    

v_2=\frac{M+m}{m}v=\frac{1kg+6*10^{-3}kg}{6*10^{-3}kg}(2.38m/s)\\\\v_2=399.04\frac{m}{s}

The speed of the bullet before the impact with the wood block is 399.04 m/s

(b) The impulse is gibe by the change in the velocity of the block, multiplied by the mass of the block:

I=M\Delta v=M(v-v_1)=(1kg)(2.38m/s-0m/s)=2.38kg\frac{m}{s}

The impulse is 2.38 kgm/s

(c) The force on the cord after the impact is equal to the centripetal force over the block and bullet. That is:

T=F_c=(M+m)\frac{v^2}{l}=(1.006kg)\frac{(2.38m/s)^2}{2.2m}=2.59N    

The force on the cord after the impact is 2.59N

4 0
3 years ago
Other questions:
  • The design phase in which a building project's basic functional requirements are first laid out (square footage, utility and equ
    7·1 answer
  • If a metal ball suspended by a rod is at rest, which force is responsible for balancing the force due to gravity?
    14·2 answers
  • A constant magnetic field of 0.50 T is applied to a rectangular loop of area 3.0 × 10-3 m2. If the area of this loop changes fro
    12·1 answer
  • What is the percentage increase IN kinetic energy(K.E) ,If the momentum(p) of a moving body is increase by 10%?And How? (If K.E=
    15·1 answer
  • In the vertical jump, an athlete starts from crouch and jumps upward to reach as high as possible. Even the best athletes spend
    14·1 answer
  • Help meh, no links and please give the right answer.
    8·1 answer
  • __________ is the theory that living things come from other living things.
    12·1 answer
  • Assuming the average rate of heat energy flowing outwards from earth to be 0.063 W/m2 calculate the energy available at a hot sp
    6·1 answer
  • A 200-kg boulder is 1000-m above the ground.
    12·1 answer
  • If the range of a projectile is and 256√3 m in the maximum height reached is 64 m. calculate the angle of projection​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!