The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
Answer:
331.75 V
Explanation:
Given:
Number of turns of the coil, N = 40 turns
Area, A = 0.06 m²
Magnetic Field, B = 0.4 T
Frequency, f = 55 Hz
Maximum induce emf, E₀ = NABω
but ω = 2πf
Maximum induce emf, E₀ = NAB(2πf₀)
Maximum induce emf, E₀ = 2πNABf₀
Where;
N is number of turns of the coil
A is area
B is magnetic field
ω is the angular velocity
f is the frequency
E₀ = 2 × π × 40 × 0.06 × 0.4 × 55
E₀ = 342.81 V
The maximum induced emf is 331.75 V
Answer:
r₂ = 0.2 m
Explanation:
given,
distance = 20 m
sound of average whisper = 30 dB
distance moved closer = ?
new frequency = 80 dB
using formula

I₀ = 10⁻¹² W/m²
now,



to hear the whisper sound = 80 dB



we know intensity of sound is inversely proportional to square of distances



r₂ = 0.2 m
From among the choices provided, the more appropriate
answer is ' T ', the initial letter often used to represent
words that include 'true', 'truth', 'trust', etc., (as well as
'tree', 'train', 'transmit', 'Transylvania', 'trachea', 'travesty',
and 'trick', which are irrelevant to the present discussion).
This response is the most fitting and appropriate, because
the statement that precedes the list of allowable choices is
exemplary in its accuracy and veracity. An ion can, in fact,
have a positive or negative charge, although the same ion
cannot have both.
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058