The Battle of the Bulge in the winter of 1944 was the last Great German offensive of the Second World War.
Answer: C and D
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
The equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.
Explanation: According to Newton's first law of motion which state that; A body at rest will continue to be at rest, or in linear motion will continue to move in a straight line, unless an external force act on it.
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
immediately the astronaut apply force to the object by pushing in, Newton's first law will be manifested in which the equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.
Answer:
the ball didn't not reach the Maximum height because of the time interval
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams