There are two valence electrons in a single atom of magnesium.
Answer: These results show that the body regulates its salt and water balance not only by releasing excess sodium in urine, but by actively retaining or releasing water in urine.
Explanation:
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
2
Explanation:
because of the squiggly lines
Answer:
THE MOLARITY OF SODIUM CHLORIDE IN THE CONTAINER IS 0.3846 M.
Explanation:
Molarity of a solution is the number of moles of solute per dm3 of solution.
Mass concentration = Molar concentration * Molar mass
1. calculate the mass concentration;
Mass conc. = 45 g in 2 L
= 45 g in 2 dm3
In 1 dm3, the mass will be 45 / 2
= 22.5 g/dm3 of NaCl.
2. Calculate the molar mass;
(Na = 23, Cl = 35.5)
Molar mass = ( 23 + 35.5 ) g/mol
Molar mass = 58.5 g/mol
3. calculate the molarity
Molarity = mss concentration / molar mass
Molarity = 22.5 g/dm3 / 58.5 g/mol
Molarity = 0.3846 mol/dm3 of NaCl.
The molarity of sodium chloride in the container is 0.3846 mol/dm3