Answer:
Temperature at which molybdenum becomes superconducting is-272.25°C
Explanation:
Conductor are those hard substances which allows path of electric current through them. And super conductors are those hard substances which have resistance against the flow of electric current through them.
As given, molybdenum becomes superconducting at temperatures below 0.90 K.
Temperature in Kelvins can be converted in °C by relation:
T(°C)=273.15-T(K)
Molybdenum becomes superconducting in degrees Celsius.
T(°C)=273.15-0.90= -272.25 °C
Temperature at which molybdenum becomes superconducting is -272.25 °C
Number of moles of the gas, Temperature and the volume of the gas.
Answer:
B- Sodium loses an electron.
D- Fluorine gains an electron.
Sodium is oxidized.
Explanation:
The reaction equation is given as:
Na + F → NaF
In this reaction, Na is the reducing agent. It loses an electron and then becomes oxidized. By so doing, Na becomes isoelectronic with Neon.
Fluorine gains the electron and then becomes reduced. This makes fluorine also isoelectronic with Neon.
This separation of charges on the two species leads to an electrostatic attraction which forms the ionic bonds.
Answer: The amount of energy needed to move an electron from one zone to another is a fixed, finite amount. The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level.
Explanation:
Answer:
unchanged
Explanation:
In any chemical of physical process, energy is neither created nor destroyed. A process that absorbs the heat from the surroundings. ... What happens to the energy of the universe during a chemical or physical process? During any chemical or physical process, the energy of the universe remains unchanged.