1) <span>A solar eclipse that occurs when the new moon is too far from earth to completely cover the sun can be either a partial solar eclipse or an -->
Answer: ANULAR ECLIPSE. Since the moon is too far, it will cover only a part of the sun, and only the external ring of the moon will be visible; this is called anular eclipse.
2) </span><span>anyone looking from the night side of earth can, in principle, see a -->
Answer: LUNAR ECLIPSE. If the moon is the right position, and the Earth's shadow covers partially or totally the moon, then a lunar eclipse occurs.
3) </span><span>during some lunar eclipses, the moon's appearance changes only slightly, because it passes only through the part of earth's shadow called the -->
Answer: PENUMBRA.
4) </span><span>a ... can occur only when the moon is new and has an angular size larger than the sun in the sky -->
Answer: TOTAL SOLAR ECLIPSE. When the moon is new, it means it is between the sun and the Earth, and its dark side faces the Earth. If the moon's angular size is also larger than the sun angular size, than it will completely cover the sun, and a total solar eclipse occurs.
5) </span><span>a partial lunar eclipse begins when the moon first touches earth's -->
Answer: SHADOW. The Earth's shadow will start to cover the moon, and partial lunar eclipse will start.
6) </span><span> a point at which the moon crosses earth's orbital plane is called a(n) -->
Answer: NODE. Eclipses occur only when the Moon is at or close to a node, otherwise sun, earth and moon are not "aligned".</span>
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
Different layers represent clouds made of gases that condense at different temperatures.
Answer:
f(x)=a(x - h)2 + k
Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.
The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):
x - h = 0
-2 - h = 0
-h = 2
h = -2
So the function ends up looking like:
f(x)=a(x - (-2))2 + 2
Subtracting a negative cancels the signs out to make a positive:
f(x)=a(x + 2)2 + 2Explanation:
Answer:
<u>400</u> J work is done BY the engine.
The internal energy of the gas is <u>620</u> J
Explanation:
The given information are;
The heat added to the cylinder = 620 J
The force applied by the piston of the engine = 8.0 kN = 8,000 N
The distance over which the force moves (the piston) = 5.0 cm = 0.05 m
The work done (by the engine) = Force × Distance = 8,000 N × 0.05 m = 400 J
The internal energy is the sum of the kinetic and potential energy of the system
Therefore, given that the internal energy, U, is the sum total of the energy in the system
∴ U = The heat supplied to the system = 620 J
Which gives;
<u>400</u> J work is done BY the engine.
The internal energy of the gas is <u>620</u> J.