Heat rises therefore the heat from the fire rises up to your hand... i didnt have any answer choices to work with sorry
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :

Speed of rocket 1 with respect to rocket 2 :



Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c
Answer:
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.
Answer:
distance between the dime and the mirror, u = 0.30 m
Given:
Radius of curvature, r = 0.40 m
magnification, m = - 2 (since,inverted image)
Solution:
Focal length is half the radius of curvature, f = 
f = 
Now,
m = - 
- 2 = -
= 2 (2)
Now, by lens maker formula:


v =
(3)
From eqn (2):
v = 2u
put v = 2u in eqn (3):
2u = 
2 = 
2(u - 0.20) = 0.20
u = 0.30 m
Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.