Answer:
0.0184
Explanation:
Let's consider the following reaction at equilibrium.
2 HI(g) ⇌ H₂(g) + I₂(g)
The concentration equilibrium constant (Kc) is equal to the product of the concentration of the products raised to their stoichiometric coefficients divided by the product of the concentration of the reactants raised to their stoichiometric coefficients.
Kc = [H₂] × [I₂] / [HI]²
Kc = (4.78 × 10⁻⁴) × (4.78 × 10⁻⁴) / (3.52 × 10⁻³)²
Kc = 0.0184
The concentration of HCl is equal to 2.54mol/L.
<h3>Mole calculation</h3>
To solve this question, one must use the molarity calculation, which corresponds to the following expression:

Thus, to find the molarity of the sample, the following calculations must be performed:



So, 0.00254 moles were added per 10ml, so we can do:

So, the concentration of HCl is equal to 2.54mol/L.
Learn more about mole calculation in: brainly.com/question/2845237
Answer:
Electrons in a hydrogen atom must be in one of the allowed energy levels. If an electron is in the first energy level, it must have exactly -13.6 eV of energy.
...
Energy Levels of Electrons.
Energy Level Energy
1 -13.6 eV
2 -3.4 eV
3 -1.51 eV
4 -.85 eV
Chemical reaction can be reversed if the energy of the reactants is less than the activation energy threshold.
<h3>
What is a reversible reaction?</h3>
A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously.
<h3>Conditions for reversible reaction</h3>
In equilibrium reaction, the activation energy of the forward reaction is more than that of backward reaction which causes bond breakage of the reactants.
Activation energy = (Threshold energy) - (Internal energy of the reactants)
Thus, a chemical reaction can be reversed if the energy of the reactants is less than the activation energy threshold.
Learn more about reversible reaction here: brainly.com/question/16614855
#SPJ1