n = 1.5atm (15L) / .0821 (280k) = .98 mol NaCl
NaCl = 22.99g Na + 35.45g Cl = 58.44g NaCl
58.44g NaCl x .98 mol NaCl = 57.27g NaCl
Explanation:
hope you get it right :)
The formula for that compound is AlN
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
It should be noted that bond A has greater energy because C. The atoms in bond A are held more tightly together than the atoms in bond B.
<h3>Bond</h3>
The relationship between the bond energies of nitrogen, iodine, and fluorine gases is that the bond in nitrogen gas is the most difficult to break.
From the information given, the molecule with the greatest bid energy is CH4. The bind energy measures the bond strength that the chemical bond has.
Also, the bond energy of the reactants in reaction 1 is greater than the bond energy of the reactants in reaction 2. Due to this, reaction 1 requires a greater input of energy than reaction 2.
Lastly, the difference in the bond energy of Chlorine and Bromine is that Bromine has more electron levels than chlorine.
Learn more about bonds on:
brainly.com/question/819068
A model aids in visualizing a molecule and understanding its properties.
In chemistry, models of molecules give us an idea about the arrangement of atoms in the molecules. Usually, the arrangement of atoms in a molecules determines the kind of reactions that the molecule can undergo.
Models are three dimensional representations of what molecules look like. They help us to conceptualize the possible orientation of atoms and groups in the molecule.
Looking at the model of H2SO4, it becomes easier to understand the chemical and physical properties of the compound owing to the arrangement of atoms.
Learn more: brainly.com/question/12000914