Based on observation of polar and non-polar molecules, polar molecules would attract each other more strongly.
<h3>What are polar and non-polar molecules?</h3>
Polar molecules are those molecules that can ionize or dissociate into their respective positive and negative ions when in an aqueous solution.
Nonpolar molecules, on the other hand, are not ionic i.e. not dissociating into ions when dissolved in water.
Polar molecules like water (H2O) contains an uneven distribution of cations (+) and anions (-), hence, would be more attracted to one another than nonpolar molecules that have an even distribution of ions.
Learn more about polarity at: brainly.com/question/16106487
#SPJ1
This problem is incomplete. Luckily, I found a similar problem from another website shown in the attached picture. The data given can be made to use through the Clausius-Clapeyron equation:
ln(P₂/P₁) = (-ΔHvap/R)(1/T₂ - 1/T₁)
where
P₁ = 14 Torr * 101325 Pa/760 torr = 1866.51 Pa
T₁ = 345 K
P₂ = 567 Torr * 101325 Pa/760 torr = 75593.78 Pa
T₂ = 441 K
ln(75593.78 Pa/1866.51 Pa) = (-ΔHvap/8.314 J/mol·K)(1/441 K - 1/345 K)
Solving for ΔHvap,
<em>ΔHvap = 48769.82 Pa/mol or 48.77 kPa/mol</em>
To determine the mass of the sample in milligrams in this problem, we use the avogadro's number to convert from atoms to moles, relate the moles of element in the sample to the mole present and the molar mass of the sample. We do as follows:
1.552 x 10^22 atoms H ( 1 mol H / 6.022x10^23 atoms H ) ( 1 mol C2H4Cl2 / 4 mol H ) ( 98.96 g C2H4Cl2 / 1 mol C2H4Cl2 ) = 0.625 g C2H4Cl2 = 625 mg <span>C2H4Cl2</span>
Answer:
When light is shone on to the surface of a metal, its electrons absorb small amounts of energy and become excited into one of its many empty orbitals. The electrons immediately fall back down to lower energy levels and emit light. This process is responsible for the high luster of metals.
Explanation:
<em> </em><em>Your </em><em>well-wisher</em><em> </em><em>:-)</em>
I think its A. because there are nuclear fusion and nuclear fission