You want to achieve the lowest number possible
Because <span>3-aminopropan-2-ol is bigger than </span><span>1-aminopropan-2-ol number wise, so you should name it as </span>1-aminopropan-2-ol
All objects DO emit and absorb electromagnetic radiation. therefore, true.
The given question is incomplete. The complete question is as follows.
A certain liquid has a normal boiling point of
and a boiling point elevation constant
. A solution is prepared by dissolving some sodium chloride (NaCl) in 6.50 g of X. This solution boils at
. Calculate the mass of NaCl that was dissolved. Round your answer to significant digits.
Explanation:
As per the colligative property, the elevation in boiling point will be as follows.
T = boiling point of the solution =
= boiling point of the pure solvent = 
= elevation of boiling constant = 
We will calculate the molality as follows.
molality = 
i = vant hoff's factor
As NaCl is soluble in water and dissociates into sodium and chlorine ions so i = 2.
Putting the given values into the above formula as follows.


m = 100 g
Therefore, we can conclude that 100 g of NaCl was dissolved.
Explanation:
It is given that aluminium nitrate and calcium chloride are mixed together with sodium phosphate.
And,
Let us assume that the solubility be "s". And, the reaction equation is as follows.

s = 
Also, 

s = 
This means that first, aluminium phosphate will precipitate.
Now, we will calculate the concentration of phosphate when calcium phosphate starts to precipitate out using the
expression as follows.
![K_{sp} = [Ca^{2+}]^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = (0.016)^{3}[PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%20%280.016%29%5E%7B3%7D%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
![2.0 \times 10^{-29} = 4.096 \times 10^{-6} \times [PO^{3-}_{4}]^{2}](https://tex.z-dn.net/?f=2.0%20%5Ctimes%2010%5E%7B-29%7D%20%3D%204.096%20%5Ctimes%2010%5E%7B-6%7D%20%5Ctimes%20%5BPO%5E%7B3-%7D_%7B4%7D%5D%5E%7B2%7D)
= 
=
M
Similarly, calculate the concentration of aluminium at this concentration of phosphate as follows.

![K_{sp} = [Al^{3+}][PO^{3-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%5BPO%5E%7B3-%7D_%7B4%7D%5D)
![9.84 \times 10^{-21} = [Al^{3+}] \times 2.21 \times 10^{-12}](https://tex.z-dn.net/?f=9.84%20%5Ctimes%2010%5E%7B-21%7D%20%3D%20%5BAl%5E%7B3%2B%7D%5D%20%5Ctimes%202.21%20%5Ctimes%2010%5E%7B-12%7D)
M
Thus, we can conclude that concentration of aluminium will be
M when calcium begins to precipitate.
Answer:
<u><em>During the colonial period, the arrival of sugar culture deeply impacted the society and economy in the Caribbean. It not only dramatically increased the ratio of slaves to free men, but it increased the average size of slave plantations</em></u>
<u><em>The negative impact of the slave trade on the development of the Caribbean islands. The slave trade had long lasting negative effects on the islands of the Caribbean. The native peoples, the Arawaks, were wiped out by European diseases and became replaced with West Africans</em></u>
<u><em>The sugar revolutions were both cause and consequence of the demographic revolution. Sugar production required a greater labor supply than was available through the importation of European servants and irregularly supplied African slaves</em></u>
Explanation:
Hope this helps:)