<span>analogous and <span>homologous</span></span>
Explanation:
The first wave was found to have a wavelength of 3 x 10⁵ m and the second wave had a wavelength of 3 x 10⁴ m
We need to find which wave have a higher frequency.
The relation between frequency and wavelength is given by :

Let f₁ and f₂ be the frequency of wave 1 and wave 2.

And

Hence, the wave having less wavelength will have higher frequency. The wave having wavelength 3 x 10⁴ m will have higher frequency.
I believe the answer is C !
Density is given by the equation D=m/V, were D is density, m is mass in grams, and V is volume in cubic centimeters.
In this problem, we have density and we have mass so we can plug into the equation and solve for V.
38.6=270.2/V
<em>*Multiply both sides by V*</em>
38.6V=270.2
<em>*Divide both sides by 38.6*</em>
V=7
The volume of the gold nugget is 7cm3.
Hope this helps!!
Answer:
Pressure inside soda can = 5.56 atm
Explanation:
Given data:
Initial volume = 1250 mL
Initial pressure = 1.00 atm
Final volume = 225 mL
Final pressure = ?
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.00 atm × 1250m L = P₂ × 225 mL
P₂ = 1250 atm. mL/ 225 mL
P₂ = 5.56 atm