Prepare a 1% copper sulfate solution. To make this solution, weigh 1 gram of copper sulfate (CuSO4 ·5H2O), dissolve in a small amount of distilled water in a 100 ml volumetric flask and bring to volume. Label this as 1% copper sulfate solution.
<span>To answer this question, you need to change the sodium phosphate unit into mol and doing the reaction. Sodium phosphate or Na3PO4 molecular weight is 163.94 or 164 rounded up. Then the amount should be: 492g/ (164g/mol)= 3 mol
For every 1 mol of </span>Na3PO4 there are 4 mol of oxygen element. To made 1 mol of O2 molecule, you will need 2 mol oxygen element. Then the amount of oxygen should be: 4/2 * 3 mol= 6 mol * 6.02 * 10^23= 36.12 * 10*23= 3.61 * 10^24
Answer: Limiting reactant = 3
Theoretical Yield= 1
Excess reactant=2
Explanation: The theoretical yield is the maximum possible mass of a product that can be made in a chemical reaction. It can be calculated from: the balanced chemical equation. the mass and relative formula mass of the limiting reactant , and. the relative formula mass of the product.
An excess reactant is a reactant present in an amount in excess of that required to combine with all of the limiting reactant. It follows that an excess reactant is one remaining in the reaction mixture once all the limiting reactant is consumed.
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. From the reaction stoichiometry, the exact amount of reactant needed to react with another element can be calculated
The behavior of the water molecules change as the pan of water is heated, As the water is heated, the water molecules move faster and farther apart. The molecules change as the water is heated and the water molecules move faster and farther.<span>
</span>
There are two iron atoms and three oxygen atoms in each molecule of Fe2O3. So that's five atoms per molecule.
One mole of any molecular substance contains <span>6.02×1023</span> molecules. Since there are two iron atoms in each of the molecules we're considering, there will be <span><span>(6.02×1023)</span>⋅2=1.204×1024</span> iron atoms in a whole mole of them.
But we're considering 0.550 mol, so multiply by 0.550:
<span>n=(0.550</span> mol<span>)⋅<span>(3.01×1024</span></span> atoms/mol<span>)=6.62×1023</span> iron atoms.