The answer to your question is false
Lewis diagram:
well first you have to know the Valence electrons the elements which will on top of the periodic table.
for examples:
H2O
it will be O-H-O and the dots will on top. oxygen have 6 valence electrons so that mean it need 6 dots. also for H it will have 7 V-electrons.
ANSWER:
Physical chemistry is the branch of chemistry that deals with the physical structure of chemical compounds, the way they react with other matter and the bonds that hold their atoms together. An example of physical chemistry is nitric acid eating through wood.
Answer:
Explanation:
The <em>purchase price</em> is what Janice invested for every share.
Since the stock was priced at $31.82 per share and she received a $1.11 dividend per share, her investment was:
- $31.82 - $1.11 = $30.71 per share ← answer
This price is the cost for Janice, over which she shall calculate their returns (gains or losses) on the future, when she sells the shares, for instance.
The total investment of Janice was the number of shares multipled by the purchase price:
- 40 shares × ($31.82 - $1.11)/ share
- 40 shares × ($30.71) / share = $1,228.40 (total investment)
Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.