1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
14

From your data, what factor(s) affect the speed of a wave? Explain your reasoning.

Physics
1 answer:
strojnjashka [21]3 years ago
3 0

wavelength frequency and other

Explanation:

Waves travel through a medium: A medium is any substance or region through which a wave is transmitted. The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature. Wave speed is calculated by multiplying the wavelength times the frequency (speed = l * f).

You might be interested in
PLEASE HELP!!
Blizzard [7]
Wind blows, and water flows, from higher pressure to lower pressure.
5 0
3 years ago
Read 2 more answers
Jeremy stands on the edge of a cliff. He throws three identical rocks with the same speed. Rock X is thrown vertically upward, r
Neko [114]

Answer:

All the three rocks will hit the ground with same speed.

Explanation:

For rocks X and Z, motion is along a straight line but in case of rock Y, motion is two dimensional. Since velocity is a vector it will be difficult for us to calculate the final velocity in each case. So we should find a way to solve this problems using a scalar which is related to velocity. The best and easy to use scalar related to velocity is kinetic energy. Since there is no air resistance, the total mechanical energy of the stone remains the same. Therefore we can use the concept of conservation of mechanical energy to solve this problem.

i.e. initial mechanical energy = final mechanical energy

let us take the edge of the cliff as initial position and ground as the final position.

We know that

Mechanical energy = Kinetic energy + Potential energy

Initial Mechanical energy = Initial Kinetic energy + Initial Potential energy

we know that

Potential energy = mgh

where,

m = mass of the body

g = acceleration due to gravity

h = height from ground

All the three rocks are identical and are thrown from same height. Therefore m and h are same for all the three which implies that the initial potential energy for all the three rocks is same.

Similarly, we know that

Kinetic energy = \frac{1}{2} mv^{2}

where,

m = mass of the body

v = velocity of the body

Since all the rocks are thrown with same speed, v is same for all the rocks. Thus initial kinetic energy is also same for all.

Since initial kinetic energy and Initial Potential energy is same for all the three, Initial Mechanical energy is also same for them.

Next let us consider the final position. At the ground h = 0. Therefore final potential energy of all the three rocks is 0. Thus they will be having only kinetic energy.

By conservation of mechanical energy,

initial mechanical energy = final mechanical energy

i.e.  Initial Kinetic energy + Initial Potential energy =  final Kinetic energy + final Potential energy

final potential energy = 0

thus,

Initial Mechanical energy = Initial Kinetic energy + Initial Potential energy = final Kinetic energy

Initial Mechanical energy = final Kinetic energy

Since Initial Mechanical energy is same for all the three, by the above equation final Kinetic energy is also same for all the three. Since here, kinetic energy is the function of only velocity, final velocity is also same for all the three rocks.

i.e. all the three rocks will hit the ground with same speed.

7 0
3 years ago
1. How much energy would be required to melt 450 grams of ice at 0°C?
xenn [34]

Answer:

Explanation:

1. The amount of heat needed to melt ice at 0°C is equal to the mass of the ice times the latent heat of fusion.

q = mL

q = (450 g) (334 J/g)

q = 150,300 J

q = 150 kJ

2. The amount of heat released by the condensation of steam at 100°C is equal to the mass of the steam times the latent heat of vaporization.

q = mL

q = (325 g) (2260 J/g)

q = 734,500 J

q = 735 kJ

3. q = mL

q = (85 g) (2260 J/g)

q = 192,100 J

q = 190 kJ

4. q = mL

q = (225 g) (334 J/g)

q = 75,150 J

q = 75.2 kJ

5. Above 100°C, water is steam.  The amount of heat needed to increase the temperature of steam is equal to its mass times its specific heat times the change in temperature.

q = mCΔT

q = (20.0 g) (2.03 J/g/°C) (303.0°C − 283.0°C)

q = 812 J

6. q = mCΔT

q = (15.0 g) (2.03 J/g/°C) (250.0°C − 275.0°C)

q = -761 J

7. q = mCΔT

q = (10.0 g) (0.90 J/g/°C) (55°C − 22°C)

q = 297 J

8. q = mCΔT

198 J = (55.0 g) C (15°C)

C = 0.24 J/g/°C

9. q = mCΔT

41,840 J = m (4.184 J/g/°C) (28.5°C − 22.0°C)

m = 1540 g

10. q = mCΔT

q = (193 g) (2.46 J/g/°C) (35°C − 19°C)

q = 7600 J

11. First, the temperature of the ice must be raised to 0°C.

q = mCΔT

q = m (2.09 J/g/°C) (0°C − (-23.0°C))

q/m = 48.1 J/g

Next, the ice must be melted.

q = mL

q/m = 334 J/g

Then, the water must be heated to 100°C.

q = mCΔT

q = m (4.184 J/g/°C) (100°C − 0°C)

q/m = 418.4 J/g

The water is then vaporized.

q = mL

q/m = 2260 J/g

Finally, the steam is heated to its final temperature.

q = mCΔT

q = m (2.03 J/g/°C) (118°C − 100°C)

q/m = 36.5 J/g

So the total amount of energy needed is:

q/m = 48.1 J/g + 334 J/g + 418.4 J/g + 2260 J/g + 36.5 J/g

q/m = 3100 J/g

3 0
3 years ago
Two uniform solid spheres of the same size, but different mass, are released from rest simultaneously at the same height on a hi
SpyIntel [72]

Answer:

options A and C

Explanation:

Since, the spheres are of same size and rotational speed of the sphere are not dependent on their masses. So, both the sphere will reach the bottom of the at the same time with the same speed. But their kinetic energies are different.

So, options A and C are correct.

4 0
3 years ago
A 0.40 kg bead slides on a straight frictionless wire with a velocity of 3.50 cm/s to the right. The
tensa zangetsu [6.8K]

Answer:

Total momentum before collision

P1 =.4 * 3.5 = 1.4       ignoring units here

Total momentum after collision

P2 = .6 * V - .4 * .7 = .6 V - .28

.6 V = 1.4 + .28   momentum before = momentum after

V = 2.8 cm/sec

In 5 sec V moves 2.8 cm/sec * 5 sec = 14 cm

5 0
2 years ago
Other questions:
  • People often break the speed limit and risk getting tickets and injury. On highway 5, people often drive 75mph when the legal sp
    10·1 answer
  • Recent technological developments like high-resolution satellite imagery and diagnostic positron emission tomography (PET scans)
    5·1 answer
  • An object mass 5kg, moving at a velocity of 10metre per seconds is suddenly heat by a force of 2N for a time 3sec. Find its new
    8·1 answer
  • asupra unui corp actioneaza o forta de 100 N timp de 5 s .Daca viteza corpului variaza de la 5m/s la 15 m/s, aflati masa corpulu
    10·1 answer
  • The shortest path between two points is: <br><br> 1) displacement <br><br> 2) breadth
    8·2 answers
  • The world’s fastest car can accelerate from rest to 60 mph(27m/s) in 2.2 seconds. What is the magnitude of its acceleration?​
    5·1 answer
  • What is a coil of wire with a current running running through it
    5·1 answer
  • The speed of a moving bullet can be deter-
    15·1 answer
  • What is the critical angle θcrit for light propagating from a material with index of refraction of 1.50 to a material with inde
    8·1 answer
  • Sunlight above the Earth's atmosphere has an intensity of 1.36 kW/m2. If this is reflected straight back from a mirror that has
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!