Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy
Answer:
<h3>The answer is 80 N</h3>
Explanation:
The force acting on the object can be found by using the formula

where
d is the distance
w is the work done
We have

We have the final answer as
<h3>80 N</h3>
Hope this helps you
Answer:
Manage your weight
Have lower blood pressure
Lower your risk of falls
it reduces your risk of heart attack
Answer:
a♦1 E_average = n E₀ / 2
, b) E_average= infinity
Explanation:
The energy values form an arithmetic series, whose sum is
S = n (a₁ + aₙ) / 2 = n (2a₁ + (n-1) r)/ 2
Where n is the number of terms, a₁ is the first term, aₙ the last term and r is the difference between two consecutive numbers in the series
r = 2E₀ - 0 = 2E₀
Therefore the sum is
S = n (0 + n E₀) / 2
S = n² E₀ / 2
The average value is
E_average = S / n
E_average = n E₀ / 2
b) the case of harmonic oscillation
We have two possibilities.
- if we take a finite number and terms gives the same previous value
- If we take an infinite number of fears the series gives infinity and the average is also infinite
E_average= infinity