Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
The scientists would do biological studies of how the protein breakdown and combines with the muscles the engineers with then create a delivery system to get the protein to the muscle quicker and more effectively
Answer:
B
Explanation:
Ionic compound can conduct electricity
Answer:
Mass is the amount of matter in an object.
Weight is how much an object weighs.
Hope this helps!
The answer is A. the solar ultraviolet ray breaks the molecule apart