In order to balance an equation, we apply the principle of conservation of mass, which states that mass can neither be created nor destroyed. Therefore, the mass of an element before and after a reaction remains constant. Here, the balanced equation becomes:
4Al + 3O₂ → 2Al₂O₃
The coefficients are 4, 3 and 2.
Answer:
<h2>15 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

But from the question
volume = final volume of water - initial volume of water
volume = 165 - 150 = 15 mL
We have

We have the final answer as
<h3>15 g/mL</h3>
Hope this helps you
The answer to this question is False
DeltaH formation = deltaH of broken bonds - deltaH of formed bonds
Broken bonds: tiple bond N-N and H-H bond
Formed bonds: N-H and N-N bonds
You also have to take note of the molar coefficients
deltaH formation = <span> [(N≡N) + 2 * (H-H)] - [4 * (N-H) + (N-N)]
= (945 + 2*436) - (4*390 + 240)
= 17 kJ/mol
The answer is 17 kJ/mol.</span>
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2