Given:
Number of black marbles = 6
Number of white marbles = 6
Let's determine the least number of marbles that can be chosen to be certain that you have chosen two marble of the same color.
To find the least number of marble to be chosen to be cartain you have chosen two marbles of the same color, we have:
Total number of marbles = 6 + 6 = 12
Number of marbles to ensure at least one black marble is chosen = 6 + 1 = 7
Number of marbles to ensure at least one white marble is chosen = 1 + 6 = 7
Therefore, the least number of marbles that you must choose, without looking , to be certain that you have chosen two marbles of the same color is 7.
ANSWER:
7
Answer:
108 slices
Step-by-step explanation:
One pie is 6 slices so 6*18 is equal to 108
Based on the percentage that passed English and those who passed Mathematics and those who failed and passed both, the total number of students who appeared in the examination are 60 students.
The number of students who passed only in Math are 12 students.
<h3>What number of students sat in the exam?</h3>
This can be found as:
= Total who passed English only + Total who passed Math only + Total who failed both + Total who passed both
Assuming the total is n, the equation becomes:
n = 0.75n - 21 + 0.55n - 21 + 21 + 0.05n
n = 1.35n - 21
21 = 0.35n
n = 21 / 0.35
= 60 students
The number who passed mathematics only is:
= (60 x 55%) - students who passed both
= 33 - 21
= 12 students
Find out more on Venn diagrams at brainly.com/question/24581814
#SPJ1
Answer:
30
Step-by-step explanation:
20+2(3*7 - 4*4)
20+2(21-16)
20+2*5
20+10
30
Answer:

Step-by-step explanation:
Solve the value of
:

-Combine
and
by subtracting
by
:


-Subtract
on both sides:


-Multiply both sides by
, the reciprocal of
:



Therefore, the value of
is
.