Answer:
2.72 cycles
Explanation:
First of all, let's find the time that the stone takes to reaches the ground. The stone moves by uniform accelerated motion with constant acceleration g=9.8 m/s^2, and it covers a distance of S=44.1 m, so the time taken is

The period of the pendulum instead is given by:

Therefore, the number of oscillations that the pendulum goes through before the stone hits the ground is given by the time the stone takes to hit the ground divided by the period of the pendulum:

Answer:
Infinity = Never ending
Explanation:
The universe could be infinite, both in terms of space and time, but there is currently no way to test whether it goes on forever or is just very big. The part of the universe we are able to observe is finite, measuring about 46 billion light years in diameter.
The set of natural numbers is an infinite set. This kind of infinity is, by definition, called countable infinity. All sets that can be put into a bijective relation to the natural numbers are said to have this kind of infinity. This is also expressed by saying that the cardinal number of the set is aleph-naught (ℵ0).
Hope this helps. Mark as brainliest!
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Wire Length 
Resistance 
Force 
Power 
a)
Generally the equation for Power is mathematically given by

Therefore



b)
Generally the equation for Magnetic Field is mathematically given by



According to Ideal gasTo solve this problem, the fastest relationship allows us to observe the proportionality between the two variables would be the one expressed in the ideal gas equation, which is

Here
P = Pressure
V = Volume
N = Number of moles
R = Gas constant
T = Temperature
We can see that the pressure is proportional to the temperature, then

This relationship can be extrapolated to all the scenarios in which these two variables are related. As the pressure increases the temperature increases. The same goes for the pressure in the atmosphere, for which an increase in this will generate an increase in temperature. This variable can be observed in areas of different altitude. At higher altitude lower atmospheric pressure and lower temperature.
Time it takes the projectile to hit the ground after being thrown up:
√h/1/2a
√8/(.5)(9.81)
√8/4.905
√1.630988787
= 1.277101714
= 1. 28
hope this helps :)