Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
option B
Explanation:
When a body is immersed in liquid there will be two force is acting on the body.
First one force acting downward due to weight of the body.
And the second force acting on the object will be buoyant force.
If the object is not in equilibrium the apparent weight will be equal to net force acting on the object.

W is the weight of the object acting downward
Fb is the buoyancy force acting upward on the object.
Hence, the correct answer is option B
Impulse equals to the force into the actual time period of the applied force . thus the force here given is 245.300 N and time is 0.05 thus the impulse is 12.265 Ns
A. acceleration.
On a Velocity vs Time graph the slope will always be equal to the acceleration. I.e. if the slope is negative, so is the acceleration and vice versa.
Answer:
A neutral atom of aluminum has 13 protons and 13 electrons. The ground state electron configuration for aluminum is 1s22s22p63s23p1. A shorthand way to write the electron configuration, called noble gas notation, is [Ne]323p1.
Explanation: