1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
6

What is the mass, in grams, of 9.21×1024 molecules of methanol

Chemistry
1 answer:
Nina [5.8K]3 years ago
7 0

Answer: 490.02g

Explanation:

9.21x10^2^4 molecules of methanol

9.21x10^2^4molecules(\frac{1mol}{6.022x10^2^3molecules} )(\frac{32.04g}{1mol} )=490.02g

You might be interested in
Why do magnesium and oxygen need to be heated for a reaction to occur?​
Alexxandr [17]

Because flame provides a source of heat so that the magnesium metal atoms can overcome their activation energy. Activation energy is the minimum energy required in order for a chemical reaction to proceed. When the magnesium metal burns it reacts with oxygen found in the air to form Magnesium Oxide.

7 0
3 years ago
How can understanding atomic light help astronomers determine what planets are composed of?
GuDViN [60]

The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. This process utilizes instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element has a unique fingerprint that allows researchers to determine what it is made of.

The fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy levels. But when photons carrying energy hit an electron, they can push it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.  

Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.

5 0
2 years ago
A gaseous substance turns into a solid. Which best describes this change? A substance that has a specific shape changes to a sub
Snezhnost [94]

A substance that has no specific volume changes to a substance that has a specific volume.

8 0
3 years ago
Read 2 more answers
What were some of the “old” ideas that Isaac Newton learned in school?
Scilla [17]

Answer:

In addition to mathematics, physics and astronomy, Newton also had an interest in alchemy, mysticism, and theology.

4 0
2 years ago
Read 2 more answers
What is the molar out of a solution that contains 33.5g of CaCl2 in 600.0mL of water
omeli [17]

Answer:

Here's what I got.

Explanation:

Interestingly enough, I'm not getting

0.0341% w/v

either. Here's why.

Start by calculating the percent composition of chlorine,

Cl

, in calcium chloride, This will help you calculate the mass of chloride anions,

Cl

−

, present in your sample.

To do that, use the molar mass of calcium chloride, the molar mass of elemental chlorine, and the fact that

1

mole of calcium chloride contains

2

moles of chlorine atoms.

2

×

35.453

g mol

−

1

110.98

g mol

−

1

⋅

100

%

=

63.89% Cl

This means that for every

100 g

of calcium chloride, you get

63.89 g

of chlorine.

As you know, the mass of an ion is approximately equal to the mass of the neutral atom, so you can say that for every

100 g

of calcium chloride, you get

63.89 g

of chloride anions,

Cl

−

.

This implies that your sample contains

0.543

g CaCl

2

⋅

63.89 g Cl

−

100

g CaCl

2

=

0.3469 g Cl

−

Now, in order to find the mass by volume percent concentration of chloride anions in the resulting solution, you must determine the mass of chloride anions present in

100 mL

of this solution.

Since you know that

500 mL

of solution contain

0.3469 g

of chloride anions, you can say that

100 mL

of solution will contain

100

mL solution

⋅

0.3469 g Cl

−

500

mL solution

=

0.06938 g Cl

−

Therefore, you can say that the mass by volume percent concentration of chloride anions will be

% m/v = 0.069% Cl

−

−−−−−−−−−−−−−−−−−−−

I'll leave the answer rounded to two sig figs, but keep in mind that you have one significant figure for the volume of the solution.

.

ALTERNATIVE APPROACH

Alternatively, you can start by calculating the number of moles of calcium chloride present in your sample

0.543

g

⋅

1 mole CaCl

2

110.98

g

=

0.004893 moles CaCl

2

To find the molarity of this solution, calculate the number of moles of calcium chloride present in

1 L

=

10

3

mL

of solution by using the fact that you have

0.004893

moles present in

500 mL

of solution.

10

3

mL solution

⋅

0.004893 moles CaCl

2

500

mL solution

=

0.009786 moles CaCl

2

You can thus say your solution has

[

CaCl

2

]

=

0.009786 mol L

−

1

Since every mole of calcium chloride delivers

2

moles of chloride anions to the solution, you can say that you have

[

Cl

−

]

=

2

⋅

0.009786 mol L

−

1

[

Cl

−

]

=

0.01957 mol L

−

This implies that

100 mL

of this solution will contain

100

mL solution

⋅

0.01957 moles Cl

−

10

3

mL solution

=

0.001957 moles Cl

−

Finally, to convert this to grams, use the molar mass of elemental chlorine

0.001957

moles Cl

−

⋅

35.453 g

1

mole Cl

−

=

0.06938 g Cl

−

Once again, you have

% m/v = 0.069% Cl

−

−−−−−−−−−−−−−−−−−−−

In reference to the explanation you provided, you have

0.341 g L

−

1

=

0.0341 g/100 mL

=

0.0341% m/v

because you have

1 L

=

10

3

mL

.

However, this solution does not contain

0.341 g

of chloride anions in

1 L

. Using

[

Cl

−

]

=

0.01957 mol L

−

1

you have

n

=

c

⋅

V

so

n

=

0.01957 mol

⋅

10

−

3

mL

−

1

⋅

500

mL

n

=

0.009785 moles

This is how many moles of chloride anions you have in

500 mL

of solution. Consequently,

100 mL

of solution will contain

100

mL solution

⋅

0.009785 moles Cl

−

500

mL solution

=

0.001957 moles Cl

−

So once again, you have

0.06938 g

of chloride anions in

100 mL

of solution, the equivalent of

0.069% m/v

.

Explanation:

i think this is it

8 0
2 years ago
Other questions:
  • COg + 2H2g - CH3OHg. Given: 35g COg and 5.00g 2H2. How many molecules are in CH3OH?
    5·1 answer
  • A mixture of 6% disinfectant solution is to be made from 8% and 3% disinfectant solutions. how much of each solution should be u
    8·1 answer
  • Anhydrous calcium chloride is used after washing your organic product with water. the purpose of this step is to:
    12·2 answers
  • A mixture of gasoline and air explodes when it encounters a spark. This is
    10·1 answer
  • Which property of water makes it helpful to use in car radiators?
    5·1 answer
  • Which one is the largest and which one is the smallest
    10·1 answer
  • A)
    13·1 answer
  • A 50.0 mL solution of 0.133 M KOH is titrated with 0.266 M HCl . Calculate the pH of the solution after the addition of each of
    10·1 answer
  • 2,2,2,3,3,5,7,8 mean median mode
    7·1 answer
  • Can a non-metal replace a metal in a single replacement reaction? If yes, is a non-metal always not able to replace a metal in a
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!