Everything requires energy to move. If the desk is moving, then it has energy.
Answer:
a) 1.248 x 10⁷ kg
b) 1.248 x 10⁴ Mg
c) 1.248 x 10¹³ mg
d) 1.248 x 10⁴ ton
Explanation:
a) Since 1000 g = 1 kg we can convert grams to kg by multiplyig any given quantity in grams by the conversion factor ( 1 kg / 1000 g):
1.248 x 10¹⁰ g * (1 kg / 1000 g) = 1.248 x 10⁷ kg
b) Since 1 Mg = 1 x 10⁶ g, the conversion factor will be ( 1 Mg / 1 x 10⁶ g):
1.248 x 10¹⁰ g * ( 1 Mg / 1 x 10⁶ g) = 1.248 x 10⁴ Mg
c) Since 1 mg = 1 x 10⁻³ g, the conversion factor will be ( 1 mg / 1 x 10⁻³ g):
1.248 x 10¹⁰ g ( 1 mg / 1 x 10⁻³ g) = 1.248 x 10¹³ mg
d) Since 1 metric ton = 1000 kg and 1000 g = 1 kg, we can use these conversions factors: ( 1 kg / 1000 g) and (1 ton / 1000 kg):
1.248 x 10¹⁰ g * ( 1 kg / 1000 g) * ( 1 ton / 1000 kg) = 1.248 x 10⁴ ton
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
Answer:
I think it's fungus or plant cell
Answer:
Adhesive forces and cohesive forces
Explanation:
Cohesive forces is how much the water molecules stick to each other and adhesive forces are to which extinct they stick to other surfaces.
When we pull the paperclip upward the water molecules adhere to it due to adhesive forces. While the water on the clip is remain connected to water in the glass because of cohesive forces.
So if the adhesive forces dominates the water will be pulled out and if the cohesive forces dominate it will remain with other water in the cup.