Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Complete question is;
A copper wire has a diameter of 4.00 × 10^(-2) inches and is originally 10.0 ft long. What is the greatest load that can be supported by this wire without exceeding its elastic limit? Use the value of 2.30 × 10⁴ lb/in² for the elastic limit of copper.
Answer:
F_max = 28.9 lbf
Explanation:
Elastic limit is simply the maximum amount of stress that can be applied to the wire before it permanently deform.
Thus;
Elastic limit = Max stress
Formula for max stress is;
Max stress = F_max/A
Thus;
Elastic limit = F_max/A
F_max is maximum load
A is area = πr²
We have diameter; d = 4 × 10^(-2) inches = 0.04 in
Radius; r = d/2 = 0.04/2 = 0.02
Plugging in the relevant values into the elastic limit equation, we have;
2.30 × 10⁴ = F_max/(π × 0.02²)
F_max = 2.30 × 10⁴ × (π × 0.02²)
F_max = 28.9 lbf
Answer: Its made from dust and gas
Explanation:
15,000,000/300,000=50
It will take 50 seconds.
I think it’s 250,000 ft./hr