Answer:
E = 3 × 10¹⁰ J
Explanation:
Mass, m = 100 kg
We need to find energy made by the loss of 100 kg of mass. The formula between the mass and energy is given by :
E = mc²
Where c is speed of light
Putting all the values, we get :
E = 100 kg × (3×10⁸ m/s)²
= 3 × 10¹⁰ J
So, the required energy is 3 × 10¹⁰ J.
Answer:
Half-reactions:
Cr³⁺ + 1e⁻ → Cr²⁺; Zn → Zn²⁺ + 2e⁻
Net ionic equation:
2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺
Explanation:
The Cr³⁺ is reduced to Cr²⁺:
<h3>
Cr³⁺ + 1e⁻ → Cr²⁺ -Half-reaction 1-</h3>
Zn is oxidized to Zn²⁺:
<h3>
Zn → Zn²⁺ + 2e⁻ -Half-reaction 2-</h3>
Twice the reduction of Cr:
2Cr³⁺ + 2e⁻ → 2Cr²⁺
Now this reaction + Oxidation of Zn:
2Cr³⁺ + 2e⁻ + Zn → 2Cr²⁺ + Zn²⁺ + 2e⁻
<h3>2Cr³⁺ + Zn → 2Cr²⁺ + Zn²⁺ - Net ionic equation</h3>
Sodium and magnesium oxides are alkaline. Aluminium oxides are amphoteric (reacting both as a base or acid). Silicon, phosphorus, sulfur, and chlorine oxides are acidic. Some non-metal oxides, such as nitrous oxide (N2O) and carbon monoxide (CO), do not display any acid/base characteristics.
Answer:
1
Explanation:
fluorine's atomic number is 9
electronic configuration: 2,7
so it needs 1 electron to stabilise
that's why 1 covalent bond
hope it helps!!