Answer:
The mole fraction of N₂ is 0.26.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. The mole fraction is a dimensionless quantity that expresses the ratio of the number of moles of a component to the number of moles of all the components present.
So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
PA = XA * PT
In this case:
- PA= PN₂= 300 torr
- XA=XN₂= ?
- PT= 1.50 atm= 1140 torr (being 1 atm= 760 torr)
Replacing:
300 torr= XN₂*1140 torr
Solving:

XN₂= 0.26
<u><em>The mole fraction of N₂ is 0.26.</em></u>
I'm not quite sure but I think if you field the corner or cut it it would physically change it while not creating something new (chemical change).
Answer:
The criteria listed in order of importance are;
1) To be inflated in the event of a collision in order to protect the occupants of the front of the vehicle
2) To be able to withstand the load of the breaking force of the occupants in the front seat of the vehicle during a collision
3) To be relatively tough so as to resist being torn on impact with a sharp object
The constraints listed in order of importance are;
1) How is the model design able to sense a collision that requires the airbag to be inflated
2) The uncertainty of the load the airbag will withstand upon collision
3) The possible hazard that could be caused by the gas used to inflate the airbag
4) The usage/interaction tendency between the vehicle occupant and the airbag system
Explanation:
In order to produce an effective design, it is important to be able to foresee the possible deficiencies of an idea so as to be able to mitigate the problems before an actual incident happens.
which substance has a giant covalent structure and contains atoms of more than one elements?
Explanation:
answer:methane