Answer:
8.854 pF
Explanation:
side of plate = 0.1 m ,
d = 1 cm = 0.01 m,
V = 5 kV = 5000 V
V' = 1 kV = 1000 V
Let K be the dielectric constant.
So, V' = V / K
K = V / V' = 5000 / 1000 = 5
C = ε0 A / d = 8.854 x 10^-12 x 0.1 x 0.1 / 0.01 = 8.854 x 10^-12 F
C = 8.854 pF
I think its inductance. If its not then I think its none of the above
Answer
Explanation:
The question was incomplete as the events are not given in the question. However the answer to your question is given as follows. The correct order of the events from youngest (top) to oldest (bottom) is given as follows.
Moon formation
↑
Earth formation
↑
Nuclear fusion in protosun
↑
BigBang
Hello There!
Great Question You Asked.
I Will Provide A Number Of Steps To Below To Show You Measures of Being Safe
Number 1.
Find shelter immediately. If you find yourself caught in a lightning storm, the key to minimizing danger is to get inside a protective structure. While most people seek shelter if lightning appears to be near, people commonly wait too long to seek shelter. If you can detect lightning, it may be close enough to strike you so always make sure you are safe.
Number 2.
Try to stay away from windows because windows provide a direct path for lightning.
Number 3.
Don’t touch anything metal or electrical.
Answer:
I_{total} = 10 M R²
Explanation:
The concept of moment of inertia in rotational motion is equivalent to the concept of inertial mass for linear motion. The moment of inertia is defined
I = ∫ r² dm
For body with high symmetry it is tabulated, in these we can simulate them by a solid disk, with moment of inertia for an axis that stops at its center
I = ½ M R²
As you hear they ask for the moment of energy with respect to an axis parallel to the axis of the disk, we can use the theorem of parallel axes
I =
+ M D²
Where I_{cm} is the moment of inertia of the disk, M is the total mass of the system and D is the distance from the center of mass to the new axis
Let's apply these considerations to our problem
The moment of inertia of the four discs is
I_{cm} = I
I_{cm} = ½ M R²
For distance D, let's use the Pythagorean Theorem. As they indicate that the coins are touched the length of the square is L = 2R, the distance from any spine to the center of the block is
D² = (R² + R²)
D² = R² 2
Let's calculate the moment of inertia of a disk with respect to the axis that passes through the center of the square
I = ½ M R2 + M R² 2
I = 5/2 M R²
This is the moment of inertia of a disc as we have four discs and the moment of inertia is a scalar is additive, so
= 4 I
I_{total} = 4 5/2 M R²
I_{total} = 10 M R²