1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kobusy [5.1K]
3 years ago
12

A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initia

lly at rest. A bullet with mass 0.0100 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.800 m, the tension in the cord is 4.86 N.
What was the initial speed v0 of the bullet?
Physics
1 answer:
Ierofanga [76]3 years ago
7 0

Answer:

v_{0}=319.2 m/s    

Explanation:

We need to use the momentum and energy conservation.

p_{0}}=p_{f}

mv_{0}=(m+M)V_{1}

Where:

  • m is the mass of bullet (m=0.01 kg)
  • M is the mass of the wooden (M=0.75 kg)
  • v(0) initial velocity of bullet
  • V(1) is the velocity of the combined object in the moment the bullet hist the block

Conservation of energy.

We have kinetic energy at first and kinetic and potential energy at the end.            

(1/2)(m+M)V_{1}^{2}=(1/2)(m+M)V_{2}^{2}+(m+M)gh

Here:

  • V(1) is the velocity of the combined at the initial position
  • h is the vertical height ( h = 0.800 m)

We can find V(2) using the definition of force at this point:

\Sigma F=(m+M)a_{c}=(m+M)(V_{2}^{2}/R)

T-(m+M)gcos(\theta)=(m+M)a_{c}=(m+M)(V_{2}^{2}/R)

cos(\theta) =(L-h)/L=(1.72-0.8)/1.72

\theta =57.66

Now, we can solve the equation to find V(2)

V_{2}=\sqrt{\frac{R*(T-(m+M)*g*cos(\theta))}{(m+M)}}

V_{2}=\sqrt{\frac{1.72*(4.86-(0.01+0.75)*9.81*cos(57.66))}{(0.01+0.75)}}

V_{2}=1.40 m/s        

Now we can find V(1) using the conservation of energy equation

(1/2)V_{1}^{2}=(1/2)V_{2}^{2}+gh

V_{1}=\sqrt{V_{2}^{2}+2gh}

V_{1}=\sqrt{1.40^{2}+2*9.81*0.8}          

V_{1}=4.20 m/s        

Finally, using the momentum equation we find v(0)

v_{0}=\frac{(m+M)V_{1}}{m}                

v_{0}=\frac{(0.01+0.75)*4.20}{0.01}

v_{0}=319.2 m/s        

I hope it helps you!

 

You might be interested in
Which of these statements about family relationships is true on Colonel Lloyd’s plantation?
Sergio [31]
Hello!

I'm unfamiliar with the book you are reading,

However, based on textual evidence, I think your answer relies somewhere in answer choice A or D.

I hope this helps!
6 0
3 years ago
Read 2 more answers
2. An overseas jet requires 6 hours to fly 9700 km. What is the jet's speed?
Debora [2.8K]

Answer:

Most commercial aircraft typically fly at around 460-575 mph, or 740-930 km/h, according to Flight Deck Friend. But private jet speed can vary depending on a variety of factors, such as the weight onboard and the weather conditions.

4 0
2 years ago
A major process by which the Sun's energy is transported around the Earth system?
Setler79 [48]
Is it Conduction. Here's my theory e<span>nergy is transferred between the earth's surface and the atmosphere by Conduction, Convection and Radiation.</span>
3 0
3 years ago
1. The more velocity an object has the harder it is to slow<br> it down, speed it up, or turn it.
deff fn [24]

Answer:

The more velocity an object has the harder it is to slow it down

Explanation:

slow it down

8 0
3 years ago
A block is projected up a frictionless inclined plane with initial speed v0 = 1.72 m/s. The angle of incline is θ = 44.8°. (a) H
Snowcat [4.5K]

Explanation:

Given

initial velocity(v_0)=1.72 m/s

\theta =44.8{\circ}

using v^2-u^2=2as

Where v=final velocity (Here v=0)

u=initial velocity(1.72 m/s)

a=acceleration   (gsin\theta )

s=distance traveled

0-(1.72)^2=2(-9.81\times sin(44.8))s

s=0.214 m

(b)time taken to travel 0.214 m

v=u+at

0=1.72-gsin(44.8)\times t

t=\frac{1.72}{9.8\times sin(44.8)}

t=0.249 s

(c)Speed of the block at bottom

v^2-u^2=2as

Here u=0 as it started coming downward

v^2=2\times gsin(44.8)\times 0.214

v=\sqrt{2.985}

v=1.72 m/s

3 0
3 years ago
Other questions:
  • A car speeds up as it rolls down a hill. which is this an example of? positive acceleration negative acceleration relative veloc
    10·2 answers
  • What type of sound is produced when string vibrates rapidly?
    10·1 answer
  • Taking the resistivity of platinoid as 3.3 x 10-7 m, find the resistance of 7.0 m of platinoid wire of average diameter 0.14 cm.
    12·1 answer
  • A train travels 81 kilometers in 2 hours and then 90 kilometers in two hours. wat is the average speed
    10·1 answer
  • From what characteristic do vertebrates get their name
    9·1 answer
  • 1.)Describe an experience where you encountered a buoyant force and tell what it felt like.
    11·1 answer
  • A car accelerates in the +x direction from rest with a constant acceleration of a1 = 1.76 m/s2 for t1 = 20 s. At that point the
    13·1 answer
  • Describe the total momentum of billiard balls before and after the cue ball collides with another ball.
    10·2 answers
  • if a diffraction grating produces a third-order bright spot for red light (of wavelength 650 nm ) at 68.0 ∘ from the central max
    5·1 answer
  • Two cello strings, with the same tension and length, are played simultaneously. Their fundamental frequencies produce audible be
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!