Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
Answer:
black will be hotter because black paint absorbs light and white reflects it.
<span>At the top of the waterfall, the water has potential energy. Once it goes over</span>
Average speed = (total distance covered) / (time to cover the distance)
total distance covered = (4km + 2km + 1km) = 7 km
time to cover the distance = (32min + 22min + 16min) = 70 min
Average speed = (7 km) / (70 min)
Average speed = 0.1 km/minute
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.