Answer:
Second element(Titanium); [Ar] 3d2 4s2
Third element(Vanadium):Ar 3d3 4s2
Explanation:
Given that there are only three d orbitals in universe L instead of five, the electronic configuration of the second and third elements in the first transition series will now look thus;
Second element(Titanium); [Ar] 3d2 4s2
Third transition element(Vanadium):Ar 3d3 4s2
Hence, the electronic configuration of Titanium and Vanadium in universe L is just the same as what it is on earth.
condensation polymerization, since a byproduct of the reaction is a single molecule of water (hence condensation of water)
addition polymerization is if you add the two polymers together like blocks and should have no byproducts
esterification is when you combine an organic acid with an alcohol. Since neither of the two polymers look like acids, you can rule this out.
never heard of saponification, Im an mechanical engineer not an organic chemist
<span>There's a trend in electronegativity. The bottom left of periodic table is the lowest (0.7) and the upper right is the highest (4.0). The most polar is the greatest difference in electronegavity.
hbr- 1~ , hi- 0.5~ ,hcl - 1.3~ , hf-1.8 so,hf is the answer</span>
The ratios which are needed to determine the mass of oxygen produced from the decomposition of 10 grams of potassium chlorate are;
- 31.998 g O2 : 1 mole O2
- 3 mole O2 : 2 mole KClO3
- 112.55 g KClO31 mole KClO3
From stoichiometry;
- We can conclude that according to the reaction;
3 moles of oxygen requires 2 moles of KClO3 to be produced.
And from molar mass analysis;
- 31.998 g O2 is equivalent to 1 mole O2
- O2112.55 g KClO3 is equivalent to 1 mole KClO3
Read more:
brainly.com/question/9920155
Answer:
Explanation:
If an antacid has sodium hydrogen carbonate/Calcium carbonate, it reacts with HCl as shown
NaHCO₃+ HCl → NaCl + CO₂+ H₂O
Antacid acid salt gas water
CaCO₃+ 2HCl → CaCl₂+ CO₂+ H₂O
Antacid acid salt gas water
The formation of gas CO₂ is shown by brisk effervescence when the antacid (sodium hydrogen carbonate/calcium carbonate) reacts with HCl (acid). So CO₂ is the additional product formed and its formation is supported by observation of brisk effervescence as HCl is added to the antacid.