Answer:
According to mass and volume, block density is 2 g/ml
Explanation:
Density is a measure, usually used in physics and chemistry, that relates the mass and volume of a solid or compound.
In general terms, the density is directly proportional to the mass, and inversely proportional to the volume, so increasing the mass will also increase the density.
The formula used to calculate the density is
ρ = 
Therefore, according to the mass and density of the block
ρ =
= 2g/ml
Being the density of the block equal to 2 g/ml.
<em>The other options are not possible, because the values given do not correspond to the result of the equation.</em>
First we must write a balanced chemical equation for this reaction

The mole ratio for the reaction between
and
is 1:2. This means 1 moles of
will neutralize 2 moles
. Now we find the moles of each reactant based on the mass and molar mass.



The
was enough to neutralize the acid because 18.87:39.67 is the same as 1:2 mol ratio.
Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Alpha particles, also called alpha ray or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a <u>helium-4 nucleus. </u>They are generally produced in the process of alpha decay, but may also be produced in other ways.
Composition: 2 protons, 2 neutrons
Mass: 6.644657230(82)×10−27 kg; 4.0015061...
Electric charge: +2 e
Symbol: α, α2+, He2+
<span>When an atom or compound is oxidized, its properties change. For example, when an iron object undergoes oxidation, it is transformed because it has lost electrons. Unoxidized iron is a strong, structurally sound metal, while oxidized iron is a brittle, reddish powder. The diagram below illustrates what happens to an atom of iron as it is oxidized
</span>