Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.
Answer:
- 178 ºC
Explanation:
The ideal gas law states that :
PV = nRT,
where P is the pressure, V is the volume, n is number of moles , R is the gas constant and T is the absolute temperature.
For the initial conditions :
P₁ V₁ = n₁ R T₁ (1)
and for the final conditions:
P₂V₂= n₂ R T₂ where n₂ = n₁/2 then P₂ V₂ = n₁/2 T₂ (2)
Assuming V₂ = V₁ and dividing (2) by Eqn (1) :
P₂ V₂ = n₁/2 R T₂ / ( n₁ R T₁) then P₂ / P₁ = 1/2 T₂ / T₁
4.10 atm / 25.7 atm = 1/2 T₂ / 298 K ⇒ T₂ = 0.16 x 298 x 2 = 95.1 K
T₂ = 95 - 273 = - 178 º C
Answer : Option 1) nuclei of
and nuclei of
only.
Explanation : Radiation is spontaneously emitted from nuclei of
because this isotope of hydrogen is highly radioactive as compared to other isotopes of hydrogen namely; nuclei of
and nuclei of
.
They have much stable nucleus as compared to nuclei of
.
The more it is unstable the more radiations will be emitted from its nucleus.