23. Enzyme A, as the temperature increases, the rate of reaction goes down. However, Enzyme B as the temperature goes up the reaction goes up.
24. Enzyme B is more active in a human cell, the reaction is what you want and everytime the temperature goes up in enzyme B the reaction goes up.
Answer:
The balanced equation is:
2 HNO3 + Mg ---> Mg(NO3)2 + H2
From the equation, we can see that we need twice the moles of HNO3 than the moles of Mg
Moles of Mg:
Molar mass of Mg = 24 g/mol
Moles = Given mass / Molar Mass
Moles of Mg = 4.47 / 24 = 0.18 moles (approx)
Hence, 2(moles of Mg) = 0.36 moles of HNO3 will be consumed
Number of moles of HNO3 after the reaction is finished is the number of unreacted moles of HNO3
Unreacted moles of HNO3 = Total Moles - Moles consumed
Unreacted moles of HNO3 = 0.64 moles (approx)
Since we approximated the value of moles of Mg, the value of remaining moles of HNO3 will also be approximate
From the given options, we can see that 0.632 moles is the closest value to our answer
Therefore, 0.632 moles will remain after the reaction
Answer:
1kg= 1000 grams hope it helps
If you are comparing 2 metals, the metal with a higher <u>Number of free ions</u> will react with EDTA first
<h3>What is EDTA ?</h3>
EDTA is a type of chemical which binds certain metal ions such as calcium and magnesium. some of the functions of EDTA includes:
- Preventing blood clotting of blood samples
- prevention of the formation of Biofilm by bacterias
The EDTA will readily react with metals which have a hiogher number of free ions that it can bind with.
Hence we can conclude that If you are comparing 2 metals, the metal with a higher <u>Number of free ions</u> will react with EDTA first.
Learn more about EDTA : brainly.com/question/10818175