Answer:
Distillation
Explanation:
The method of distillation can be used to separate the two liquids, if their boiling point is known. The liquid with lower boiling point will be evaporated and its vapours will be captured, while the liquid with higher boiling point will remail in the container in the liquid state.
Answer:
B. as a food preservative in the manufacture of detergents
.........
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is
![molarity = moles of solute ÷ liters of solution](https://tex.z-dn.net/?f=molarity%20%3D%20moles%20of%20solute%20%C3%B7%20liters%20of%20solution)
To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Just look it up on goog^le or a chart