Answer:
The concentration of the solution is 1.364 molar.
Explanation:
Volume of perchloric acid = 29.1 mL
Mass of the solution = m
Density of the solution = 1.67 g/mL

Percentage of perchloric acid in 48.597 solution :70.5 %
Mass of perchloric acid in 48.597 solution :
= 
Moles of perchloric acid = 
In 29.1 mL of solution water is added and volume was changed to 250 mL.
So, volume of the final solution = 250 mL = 0.250 L (1 mL = 0.001 L)


The concentration of the solution is 1.364 molar.
Answer:
- What distinguish a solution in general from an aqueous solution is the solvent. A solution in general may contain any solvent, which may be solid, liquid or gas, while an aqueous solution is formed with water as solvent.
Explanation:
A solution in general is a homogeneous mixture in which a substance, named solute, is dissolved, in other substance, name solvent.
Solutions may be in solid, liquid or gas state. There are many kind of solvents. Usually, in a lab you work with liquid solutions. Some liquid solvents are: ethanol, glycerin, hexane, benzene, and water, among many others.
Aqueous solution is a solution where the solvent is water. Of course, the solute may be any one: NaCl, sugar, ethanol, an acid, a base, a salt.
What distinguish a solution in general and an aqueous solution is the solvent.
<h3>
Answer: D) all of the above</h3>
Explanation:
The lungs pump oxygen in and carbon dioxide out, which goes through the blood stream to help with the cell's energy needs.
Nutrients pass through the blood stream as well. The nutrients start with the digestive system (mouth, esophagus, stomach, small intestine) before going into the blood stream. The nutrients are building blocks to help make new cells when old ones die off.
When those cells die off, the body sheds them like dead skin, but internal dead cells are passed off as waste. This waste and other byproducts the body doesn't need passes through the blood stream as well.
In short, the blood stream is basically the highway to help get desired materials (eg: oxygen and nutrients) and get rid of waste (eg: carbon dioxide and other unwanted byproducts or dead cell material)
So that's why the answer includes A, B and C.
<span>As mentioned, the isomerization of cyclopropane to propylene is a first-order process with a half-life of 19 min at 500°c. A first-order reaction kinetic rates means that the rate is constant throughout the reaction.
Thus, the time it takes for the partial pressure of cyclopropane to decrease from 1 atm to 0.125 atm at 500°c is </span><span>57 minutes.</span>