Answer: Escaped volume = 0.0612m^3
Explanation:
According to Boyle's law
P1V1 = P2V2
P1 = initial pressure in the tire = 36.0psi + 14.696psi = 50.696psi (guage + atmospheric pressure)
P2 = atmospheric pressure= 14.696psi
V1 = volume of tire =0.025m^3
V2 = escaped volume + V1 ( since air still remain in the tire)
V2 = P1V1/P2
V2 = 50.696×0.025/14.696
V2 = 0.0862m^3
Escaped volume = 0.0862 - 0.025 = 0.0612m^3
Answer:
<em>The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.
Answer:

Explanation:
From the question we are told that:
Potential difference 
New Capacitor 
Generally the equation for Capacitor capacitance is mathematically given by

Generally the equation for New p.d' is mathematically given by




Answer:
Δ
= 84 Ω,
= (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 /
= ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 /
= 1 / R₁ + 1 / R₂
1 /
= 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ
/
= ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ
/ 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ
/ 400 = 0.1 + 0.05 + 0.06
Δ
= 0.21 400
Δ
= 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω