Answer:
This formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire. Shows there is an inverse relationship between Resistance and Area of the wire.
Explanation:
A simple way to explain the physics behind such an electrical code is to compare the flow of current through wires to the flow of water through pipes, they are similar in any respect. The resistance to the flow of current in an electric circuit is similar to the frictional experienced by water when flowing through water pipes. Just as water will flow easily with little resistance through a water pipe with the larger cross-sectional area than one with a smaller cross-sectional area, in the same way, wires with larger cross-sectional area will allow the flow of larger amount of current compared to wires with smaller cross-sectional area assuming all other variables are the same.
From the formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire
We can see that the resistance and area of the wire have an inverse relationship. An increase in the area of the wire will lead to a decrease in the resistance of the wire.
Answer:
<u> Power = 9.75 ×10^8
</u>
Explanation:
- Power is rate of change of energy.
- Here gravitational energy is transferred to kinetic energy of water at a definite rate.
For one second 650m^3 of water flows out down to 150m oh depth.
So, the energy at a height of 150m is transformed to kinetic energy.
for a second,
650m^3 of water flows down ⇒ (1000kg/m^3 × 650m^3) = 6.5×10^5kg of warer flos down.
The total gravitational potential energy stored in water is
= <u>mass of water × height× gravity</u>
= 6.5 ×10^5 × 150 × 10 = 9.75 ×10^8
As it is transformed in a second it is also equal to <u>Power.</u>
Answer:
a = 0.701 m / s²
Explanation:
As the game is spinning the acceleration is centripetal
a = v² /r
The park system after a small period of acceleration goes at a constant speed, for which we can use the relations of the uniform motion
v = d / t
the distance of a circle is
d = 2π r
we substitute
a = (2π r / t) ² / r
a = 4 pi² r / t²
let's calculate
a = 4 pi² 12 / 26²
a = 0.701 m / s²
Answer:
a = 603.59 m/s^2
Explanation:
from the data given . the rate of change in magnetic field is as follow

from the faraday's law of induction , the expression for the induced emf in region of radius r as follow




electric field at point P_1 as follow



from newton 2nd law of motion, the acceleration of proton is
F = ma
qE = ma


a = 603.59 m/s^2