A classic puzzle...
She either kicked it at a wall <em>exactly</em><em /> 10 foot in front of her, where the ball rebounded off the wall.
Or, she kicked the ball straight up, vertically, at a <em>90 degree angle,</em> where due to the law of gravity, which states that anything that goes up must come down, when the soccer ball reaches exactly 10 feet, it falls back down.
(Note: This is nearly impossible to achieve -- exactly 10 feet.)
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
Since there is no decimal point in the number given above, the counting for the number of the significant figures will start from the left. Then, the first zero from the left is insignificant. Therefore, in this number there are 6 significant figures.
Answer:
The current on the water layer = 1.64×10^-3A
Explanation:
Let's assume that the radius given for the string originates from the centre of the string. The equation for determining the current in the water layer is given by:
I = V × pi[(Rwater + Rstring)^2 - (Rstring)^2/ ( Resitivity × L)
I =[ 166×10^6 ×3.142[(0.519×10^-4) + (2.15×10^-3])^2 - ( 2.15×10^-3)^2] / ( 183 × 831)
I =[ 521572000(4.848×10^6)- 4.623×10^-6]/ 154566
I = 252.83 -(4.623×10^-6)/ 154566
I = 252.83/154566
I = 1.64× 10^-3A