Answer:
Given values of Planck Constant are equivalent in English system and metric system.
Explanation:
Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.
Converting this in to metric system .
We have 1 eV = 1.6 x 10⁻¹⁹ J
Converting
4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s
So Given values of Planck Constant are equivalent in English system and metric system.
250kg
would have momentum that is being caried by the impact of the trow
<em>Energy</em><em> </em><em>can</em><em> </em><em>neither </em><em>be</em><em> </em><em>created </em><em>nor</em><em> </em><em>be</em><em> </em><em>destroyed</em><em> </em><em>but</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>converted</em><em> </em><em>from</em><em> </em><em>one</em><em> </em><em>form</em><em> </em><em>to</em><em> </em><em>another </em><em>.</em>
Answer:
I = 0.2 A
Explanation:
Lamp is rated at 300 mA
I_lamp = 0.3 A
Voltage is; V = 3V
Thus; Resistance is given by;
R = V/I
R = 3/0.3
R = 10 ohms
Now, since the ammeter of 5 ohms is connected in series with the lamp. Thus equivalent resistance;
R_eq = 10 + 5
R_eq = 15 ohms
Ammeter current will be;
I = V/R_eq
I = 3/15
I = 0.2 A
~Formula: Voltage= current• resistance
(V= Ir)
~Using this formula, plug in the numbers from the equation into the formula
~5=25i
~Now you have a one-step equation
~Divide by 25 on both sides and you should get your answer:
~I= 0.2 (which means current is 0.2)