Explanation:
The force on the passenger will be F = ma
Here, m does not change, but a is the variable.
If the cars slows down very fast, the acceleration will be higher, and thus the force will be higher.
If the acceleration is lower, the force will be lower as well, which would be the most desirable scenario for the passenger.
No, because the distance-time would show a constant velocity but the velocity-time graph shows an increasing velocity.
Answer:
Eleven seconds.
Explanation:
Two keys are needed to solve this problem. First, the conservation of momentum: allowing you to calculate the cart's speed after the elephant jumped onto it. It holds that:

So, once loaded with an elephant, the cart was moving with a speed of 4.29m/s.
The second key is the kinematic equation for accelerated motion. There is one force acting on the cart, namely friction. The friction acts in the opposite direction to the horizontal direction of the velocity v0, its magnitude and the corresponding deceleration are:

The kinematic equation describing the decelerated motion is:

It takes 11 seconds for the comical elephant-cart system to come to a halt.