Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.
Answer:
The air resistance on the skydiver is 68.6 N
Explanation:
When the skydiver is falling down, there are two forces acting on him:
- The force of gravity, of magnitude
, in the downward direction (where m is the mass of the skydiver and g is the acceleration due to gravity)
- The air resistance,
, in the upward direction
So the net force on the skydiver is:

where
m = 7.0 kg is the mass

According to Newton's second law of motion, the net force on a body is equal to the product between its mass and its acceleration (a):

In this problem, however, the skydiver is moving with constant velocity, so his acceleration is zero:

Therefore the net force is zero:

And so, we have:

And so we can find the magnitude of the air resistance, which is equal to the force of gravity:

Answer:
i have absolutly no idea how to do it but i looked it up and your answer should be B. i could be wrong but thats what the web told me
Answer:
The Precambrian Era comprises all of geologic time prior to 600 million years ago. The Precambrian was originally defined as the era that predated the emergence of life in the Cambrian Period.
Explanation: