D.Neither High- nor low-pressure systems lead to rain
<span>Answer:
F(x) = ax^2 - bx
or
F(x) = ax² - bx
F(x) = 30x² - 6x
â«F(x)dx = â«(30x² - 6x)dx
as this is evaluated from zero to x
W = 10x³ - 3x² <===ANS
W = 10(0.42³) - 3(0.42²) - [10(0³) - 3(0²)]
W = 0.212 J <===ANS
W = 10(0.72³) - 3(0.72²) - [10(0.42³) - 3(0.42²)]
W = 1.966 J <===ANS</span>
Assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Missing part of the question: determine the magnitude of Porsha's acceleration.
Given the data in the question;
- Mass of Porsha;

- Mass of Zorn;

- Force of Porsha push;

Magnitude of Porsha's acceleration; 
To determine the magnitude of Porsha's acceleration, we use Newton's second laws of motion:

Where m is the mass of the object and a is the acceleration.
We substitute the mass of Porsha and the force he used into the equation
Therefore, assuming the friction between the skaters and the ice is negligible, the magnitude of Porsha's acceleration is 2.8m/s².
Learn more: brainly.com/question/25125444
Answer:
The minimum speed is 14.53 m/s.
Explanation:
Given that,
r = 11 m
Friction coefficient = 0.51
Suppose we need to find the minimum speed, that the cylinder must make a person move at to ensure they will stick to the wall
When frictional force becomes equal to or greater than the weight of person
Then, he sticks to the wall
We need to calculate the minimum speed
Using formula for speed

Where,


Put the value into the formula


Hence, The minimum speed is 14.53 m/s.
Answer:
The correct option is A
Explanation:
From the question we are told that
The mass number is 
Generally the mean radius is mathematically evaluated as

Here
is a constant with a value 
So


