Answer:
please give me brainlist and follow
Explanation:
Formula for number of images formed by two plane mirrors incident at an angle θ is n = 360∘θ. If n is even, the number of images is n-1, if n is an odd number of images.
Answer:
C) 7.35*10⁶ N/C radially outward
Explanation:
- If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
- So, we can write the following equation:

- As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
- So, the +8 μC charge of the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
- So, on the outer surface of the shell there must be a charge that be the difference between them:

- Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

- As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
Force=A×M
10m/s×0.20kg
=2Newton
The work done will be equal to the potential energy of the piano at the final position
P.E=m.g.h
.consider the plank the hypotenuse of the right triangle formed with the ground
.let x be the angle with the ground=31.6°
.h be the side opposite to the angle x (h is the final height of the piano)
.let L be the length of the plank
sinx=opposite side / hypotenuse
= h/L
then h=L.sinx=3.49×sin31.6°=0.638m
weight w=m.g
m=w/g=3858/10=385.8kg
Consider Gravity g=10m/s2
then P.E.=m.g.h=385.8kg×10×0.638=2461.404J
then Work W=P.E.=2451.404J
Answer:

Explanation:
The rotated angle is given by:

Since this is a quadratic equation it can be solved using:

Rewriting our equation:


Since
we discard the negative solution.
