Since U=0,
h=1/2gt^2 (h= ut+1/2gt^2, U=0)
h=1/2*10*4*4
h=80m
Answer: for 1 is number 1
and for 2 is 3
Explanation:
There are different options here but all of them work by approximating and assuming.
i) that the boulder is above ground.
ii) that the bottom surface of the boulder is known.
iii) the shape of the boulder is taken into account.
The most accurate way is measuring it by displacement method but the boulder is immovable hence the volume can be calculated by measuring the boulder or a waterproof box to be built around the boulder and calculate the volume occupied by boulder.
All the above methods are estimating methods.
*Another way to find the density is through specific gravity.
S.G = <u>Density</u><u> </u><u>of</u><u> </u><u>object</u>
Density of water
If the material that makes the boulder is known that is if it's stone or a mineral then the specific gravity can be found.
If the boulder is purely rock then S.G lies between 3 - 3.5 and the density of water is known thus the density of the boulder can be found without moving the boulder.
This is what I think after correction and allthe best!
Answer:
432 units
Explanation:
Let the charges be q and Q separated by a distance r. The electrostatic force , F = kqQ/r² = 72 units. If q = 2q and Q = 3Q, then the new electrostatic force is
F = k × 2q × 3Q/r² = 6kqQ/r² = 6 × 72 = 432 units
<span>7.21 ft/s^2
Since you're looking for average acceleration, you can simply divide the change in velocity by the time. To make the calculation more reasonable, first convert the speed of 173 mi/h into ft/sec by multiplying by 5280 to convert from mi/h to ft/h and then dividing by 3600 to convert from ft/h to ft/s.
173 * 5280 / 3600 = 253.7333 ft/s
Now divide the change in velocity by the time in seconds.
253.7333 ft/s / 35.2 s = 7.208333 ft/s^2
Rounding result to 3 significant figures gives 7.21 ft/s^2</span>