let me know!! i need the same answer,
Answer:
The thermal energy is carried by electromagnetic waves
Explanation:
There are three types of transfer of heat (thermal energy):
- Conduction: conduction occurs when two objects/two substances are in contact with each other. The heat is transferred from the hotter object to the colder object by the collisions between the molecules of the two mediums.
- Convection: convection occurs when a fluid is heated by an external source of heat. The part of the fluid closer to the heat source gets warmer, therefore it becomes less dense and it rises, and it is replaced by the colder part of the fluid, which is colder. Then, this part of fluid is heated as well, so it gets warmer, it rises, etc.. in a cycle.
- Radiation: radiation occurs when thermal energy is carried by electromagnetic waves. Since electromagnetic waves do not need a medium to propagate, this is the only method of heat transfer that can occur through a vacuum (so, in space as well).
Indeed, the Sun emits a lot of electromagnetic radiation, which travels through space and eventually reaches the Earth, heating it.
Answer:
<em>The sprinter traveled a distance of 7.5 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It's a type of motion in which the rate of change of the velocity of an object is constant.
The equation that rules the change of velocities is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Using the equation [1] we can solve for a:

The sprinter travels from rest (vo=0) to vf=7.5 m/s in t=2 s. Computing the acceleration:


Now calculate the distance:


The sprinter traveled a distance of 7.5 m
Your first step is to find the circumference of the earth, with the numbers given. You can do that by putting the radius of 6200 kilometres into the 2πr equation. That should get you a circumference of 12400π, or about 38,955.75 kilometres.
Next, you can use the rate the Jetson's car is going (180km/h) and divide the 38,955.75 by it to see how many hours it would take at that constant speed.
38,955.75 / 180 = 216.42 hours
Then you can divide that by 24 to get how many days
Answer:
The two main reasons that your results might not match up each time are uncontrolled conditions and experimental error.