1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
10

How does radiation transfer thermal energy from the Sun to Earth?

Physics
2 answers:
Olin [163]3 years ago
7 0
Radiation transfers thermal energy from the sun to earth by electromagnetic waves. Electromagnetic waves transfer energy with or without matter.
Svetradugi [14.3K]3 years ago
4 0

Answer:

The thermal energy is carried by electromagnetic waves

Explanation:

There are three types of transfer of heat (thermal energy):

- Conduction: conduction occurs when two objects/two substances are in contact with each other. The heat is transferred from the hotter object to the colder object by the collisions between the molecules of the two mediums.

- Convection: convection occurs when a fluid is heated by an external source of heat. The part of the fluid closer to the heat source gets warmer, therefore it becomes less dense and it rises, and it is replaced by the colder part of the fluid, which is colder. Then, this part of fluid is heated as well, so it gets warmer, it rises, etc.. in a cycle.

- Radiation: radiation occurs when thermal energy is carried by electromagnetic waves. Since electromagnetic waves do not need a medium to propagate, this is the only method of heat transfer that can occur through a vacuum (so, in space as well).

Indeed, the Sun emits a lot of electromagnetic radiation, which travels through space and eventually reaches the Earth, heating it.

You might be interested in
When the cylinder is displaced slightly along its vertical axis it will oscillate about its equilibrium position with a frequenc
Nesterboy [21]

Answer:

w = √[g /L (½ r²/L2 + 2/3 ) ]

When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE

Explanation:

We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is

          w² = mg d / I

In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow

         d = L / 2

The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated

        I = ¼ m r2 + ⅓ m L2

        I = m (¼ r2 + ⅓ L2)

now let's use the concept of density to calculate the mass of the system

        ρ = m / V

        m = ρ V

the volume of a cylinder is

         V = π r² L

          m =  ρ π r² L

let's substitute

        w² = m g (L / 2) / m (¼ r² + ⅓ L²)

        w² = g L / (½ r² + 2/3 L²)

        L >> r

         w = √[g /L (½ r²/L2 + 2/3 ) ]

When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE

4 0
3 years ago
An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm. The coil lies in the
Darina [25.2K]

Answer:

9.25 x 10^-4 Nm

Explanation:

number of turns, N = 8

major axis = 40 cm

semi major axis, a = 20 cm = 0.2 m

minor axis = 30 cm

semi minor axis, b = 15 cm = 0.15 m

current, i = 6.2 A

Magnetic field, B = 1.98 x 10^-4 T

Angle between the normal and the magnetic field is 90°.

Torque is given by

τ = N i A B SinФ

Where, A be the area of the coil.

Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²

τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°

τ = 9.25 x 10^-4 Nm

thus, the torque is 9.25 x 10^-4 Nm.

5 0
3 years ago
A passenger train left station A at 6:00 p.m. Moving with the average speed 45 mph, it arrived at station B at 10:00 p.m. A tran
marishachu [46]
<h2>Average speed of transit train is 60 mph</h2>

Explanation:

Average speed of passenger train = 45 mph

Time taken from station A to station B for passenger train  = 10:00 - 6:00 = 4 hours

Distance between station A to station B = 45 x 4 = 180 miles.

Time taken from station A to station B for transit train  =  4 - 1 = 3 hours

Distance between station A to station B = Average speed of transit train x Time taken from station A to station B for transit train

180 = Average speed of transit train x 3

Average speed of transit train = 60 mph

Average speed of transit train is 60 mph

8 0
3 years ago
I will mark brainliest!
Dvinal [7]
Normally a storm surge.

Experience: I lived through Andrew and Wilma

3 0
3 years ago
Read 2 more answers
A transverse standing wave is set up on a string that is held fixed at both ends. The amplitude of the standing wave at an antin
ZanzabumX [31]

Answer:

a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s

b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s

Explanation:

Given the data in the question;

as the equation of standing wave on a string is fixed at both ends

y = 2AsinKx cosωt

but k = 2π/λ and ω = 2πf

λ = 4 × 0.150 = 0.6 m

and f =  v/λ = 260 / 0.6 = 433.33 Hz

ω = 2πf = 2π × 433.33 = 2722.69

given that A = 2.20 mm = 2.2×10⁻³

so V_{max1} = A × ω

V_{max1} = 2.2×10⁻³ × 2722.69 m/s

V_{max1} =  5.9899 m/s

therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s

b)

A' = 2AsinKx

= 2.20sin( 2π/0.6 ( 0.075) rad )

= 2.20 sin(  0.7853 rad ) mm

= 2.20 × 0.706825 mm

A' = 1.555 mm = 1.555×10⁻³

so

V_{max2} = A' × ω

V_{max2} = 1.555×10⁻³ × 2722.69

V_{max2} = 4.2338 m/s

Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s

8 0
3 years ago
Other questions:
  • People in the future may well live inside a rotating space structure that is more than 2 km in diameter. Inside the structure, p
    6·1 answer
  • You have a 160-Ω resistor and a 0.430-H inductor. Suppose you take the resistor and inductor and make a series circuit with a vo
    10·1 answer
  • The equation that is used to solve second law problems is # F= ma.
    8·1 answer
  • Under which condition is no work done?
    6·2 answers
  • The distance between the first and fifth minima of a single-slit diffraction pattern is 0.400 mm with the screen 37.0 cm away fr
    5·1 answer
  • A stone with a weight of 5.29 N is launched vertically from ground level with an initial speed of 26.0 m/s, and the air drag on
    13·1 answer
  • Question in picture.
    5·2 answers
  • A dart with a mass of 0.5kg is thrown at 15m/s and sticks into a 1kg apple hanging
    14·1 answer
  • Eva Baul throws a ball upward at 23.4 m/s
    10·1 answer
  • How does the value of gravity vary as you go:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!